- 상위 문서 : 열역학
1 개요
상전이, 相轉移, Phase Transition.
상변태, 相變態, Phase Transformation
상전이는 물질이 하나의 상(相, phase)에서 다른 상으로 전이(轉移, transition)되는 현상을 의미한다. 간단하게 생각해서 얼음이 녹아서 물이 되고, 물이 끓어서 수증기가 되는 각각의 단계가 바로 상전이 과정이다. 상전이 구간에서는 여러 흥미로운 특징들이 나타나고, 초전도체 등 유용한 성질과의 연관성도 많기에 열역학에서 핫 토픽 중의 하나이다.
2 용어 정의
상(Phase)에는 계(系, system)에 따라 두가지 정의가 존재한다. 우선 일반적인 물질계에서 상(Phase)이란 흔히 물질의 세 상태, 즉 고체(solid), 액체(liquid), 기체(gas)를 의미하나, 흔히 '제 4의 상'으로 불리는 플라즈마를 비롯하여 물질 내부의 분자구조에 따라 다양한 상들이 존재할 수 있다.[1] 아래는 물질의 주요 세 상태 사이의 상전이를 나타내는 용어이다. 상태변화에도 쓰여있지만.
최종상 | |||||
고체 | 액체 | 기체 | 플라즈마 | ||
초기상 | 고체 | 고체 간 변태 | 융해 | 승화 | - |
액체 | 응고 | - | 기화 | - | |
기체 | 승화 | 응축 | - | 이온화 | |
플라즈마 | - | - | 재결합 | - |
열역학적 관점에서 보면, 모든 물리적, 화학적 변화는 '우주의' 엔트로피가 높아지는 방향으로 일어난다. 이는 일정한 압력과 온도에서, 우주의 엔트로피를 계(System)의 정보만으로 귀속시키기 위해 도입한 함수인 계의 깁스자유에너지(G, Gibbs Free Energy)가 감소하는 방향이다. 깁스 자유에너지 변화를 엔탈피와 엔트로피로 표현하면 [math] \Delta G= \Delta H-T \Delta S [/math]로 나타난다. 따라서 상전이, 상변태 역시 깁스자유에너지가 감소하는 방향으로 나타난다. 식을 보면, 각 온도에서 '계의' 엔트로피 변화와 엔탈피 변화가 거의 일정하다고 가정하면, 상변태는 엔탈피 변화와 엔트로피 변화가 온도에 따라 서로 경쟁하는 모습을 보인다.
H2O가 액체에서 기체로 상전이한다고 가정해보자. 엔탈피와 엔트로피 모두 변화량이 양수일 것이다. 엔트로피 변화가 크게 작용하므로 깁스자유에너지 변화는 음수이다. 즉 물이 끓게 되는 현상이 일어난다. 반면에 온도가 낮으면 엔탈피 변화가 크게 작용한다. 따라서 깁스자유에너지 변화가 양수이다. 역반응인 기체에서 액체로의 상전이는 깁스자유에너지가 음수이므로, 기체에서 액체로 상전이가 일어나게 된다.
다만 이는 정확한 설명은 아니다. 엔트로피 변화와 엔탈피 변화가 온도, 압력변화에 따라 상수가 아닌 점은 감안해야 하며, 어디까지나 모든 현상은 '우주의', '고립계의', '전체' 엔트로피가 증가하는 방향으로 일어나는 것이 가장 기본이며, 깁스자유에너지 변화는 어디까지나 일정온도, 압력 조건에서만 작동한다.
두 번째 정의는 우선 계의 정의부터 해야한다. "계"란 원소의 조합이 일치할 때를 의미하기도 한다. 니켈 10%+구리 90%나 니켈 90%+구리 10%나 같은 계로 취급한다는 이야기다. 그렇지만 니켈-구리 합금뿐 아니라 금속에서는 당연히 온도와 구성 비율에따라 같은 성질을 보이는 조합이 있을 터고, 완전히 다른 성질을 보이는 조합이 있을 터인데, 이때 그 조합의 모임을 상이라 한다. 즉 같은 고체에서라도 분자가 어떤 방식으로 결합하느냐에 따라 물리적인 성질이 달라지기 때문에 이러한 재료를 활용해야 하는 재료공학이나 기계공학에서는 이러한 금속, 특히 강철의 상변화에 대해 죽어라 외우게 된다... 대표적인 예로, 순수한 철의 경우, 온도에 따라 원자들이 면심입방구조로 배열되는가, 체심입방구조로 배열되는가에 따라[2] 강도가 달라지며, 여기에 다른 물질이 들어가 합금을 이루게 되면 마텐사이트, 오스테나이트 등등의 온갖 다양한 형태가 나타나게 된다. 여기에 급랭시키느냐 천천히 냉각시키느냐, 한번 온도를 높였다가 낮추느냐 등등 재련방법은 수십가지.
3 상전이에 대한 이론
3.1 깁스 자유에너지와 화학 퍼텐셜
자유 에너지 참조
3.2 클라지우스-클라페이롱 식(Clasius-Clapeyron equation)
[math] \frac{dP}{dT} = \frac{\Delta H}{T \Delta V} [/math]
이 식은 상전이가 평형적으로 일어나는 지점에서 사용할 수 있으며, dP를 적분함으로써 두 상간의 엔탈피 변화와 부피 변화를 알면 상평형도를 그릴 수 있다. 엔탈피의 온도의존은 매우 낮고, 온도변화에 따른 고상이나 액상의 부피변화는 미미하기 때문에 일일이 실험을 하지 않아도 수식적으로 그래프를 그릴 수 있게 된 셈. 고상/액상 - 기상 간 전이의 경우, 기체 부피가 월등히 크기 때문에 부피 변화를 기체의 부피로 치환할 수 있다. 치환한 후 기체방정식으로 V를 P, T에 대한 정보로 나타낸 후 변수 분리하여 적분하면 평형을 쉬이 나타낼 수 있다.
식의 유도과정은 서로 다른 두 상의 깁스자유에너지(화학퍼텐셜)의 미소변화를 같다고 놓으면 자연스레 유도된다.
3.2.1 유도
계에 [math] \alpha [/math]와 [math] \beta [/math]의 두 상이 존재할 때, 등온등압에서 평형에 대한 조건은 다음과 같다.
[math] \mu(\alpha)=\mu(\beta) [/math] 이고, 미분형으로 나타내면 [math] d\mu(\alpha)=d\mu(\beta) [/math] 이다.
이를 풀면, [math] -S_m(\alpha)dT+V_m(\alpha)dP=-S_m(\beta)dT+V_m(\beta)dP [/math] 가 되고
온도와 압력에 대해서 각각 정리하면, [math] [V_m(\alpha)-V_m(\beta)]dP=[S_m(\alpha)-S_m(\beta)]dT [/math]
좌변과 우변을 정리해주면 [math] \frac{dP}{dT}=\frac{S_m(\alpha)-S_m(\beta)}{V_m(\alpha)-V_m(\beta)} [/math] 이고, 이를 간단하게 나타내면, [math] \frac{dP}{dT}=\frac{\Delta S_m}{\Delta V_m} [/math] 와 같이 표현할 수 있다.
이 때, [math] \Delta S= [/math][math] \frac{\Delta H}{T} [/math] 이므로 [math] \frac{dP}{dT} = \frac{\Delta H}{T \Delta V} [/math]가 유도된다.
3.3 상전이 메커니즘
3.3.1 확산 변태
3.3.2 무확산 변태
3.4 다성분계의 상전이
3.4.1 고용체(Solid Solution)
3.4.2 이상용액, 정규용액, 실제용액
3.4.3 정규용액과 상분리
3.4.4 상 분리 기구
3.4.4.1 스피노달 분해
3.4.5 중간상, 성분간 화합물
4 상전이의 분류
4.1 깁스 자유에너지의 연속성에 따른 분류
4.1.1 1차 상전이(First order phase transition)
잠열(Latent Heat)이 있는 상전이다. 익숙한 상전이가 대부분 여기 들어간다 기화, 응고 등.
Gibs 자유에너지와 그 1, 2계 도함수가 상전이 지점에서 각각 연속, 불연속, 불연속(CDD)하게 나타난다.
4.1.2 2차 상전이(Second order phase transition)
잠열이 없는 상전이다.
Gibs 자유에너지와 그 1, 2계 도함수가 상전이 지점에서 각각 연속, 연속, 불연속(CCD)하게 나타난다.
Order-Disorder transition 등의 상전이가 여기에 들어간다.
자성체에서의 상자성체 <-> 강자성체 상전이, Glass-Rubber Transition 또한 여기에 해당한다. 이징모형 참조.
4.2 초기상과 최종상에 따른 분류
최종상 | |||||
고체 | 액체 | 기체 | 플라즈마 | ||
초기상 | 고체 | 고체 간 변태 | 융해 | 승화 | - |
액체 | 응고 | - | 기화 | - | |
기체 | 승화 | 응축 | - | 이온화 | |
플라즈마 | - | - | 재결합 | - |
4.2.1 동소변태
Allotropic Transfromation
- 고체간 변태의 일종으로, 성분 원소의 배합은 일정하지만 원소의 배열이 달라지면서 생기는 변태과정이다. 쉽게 얘기하자면 동소체간의 변태. 다이아몬드-흑연의 상전이, 철 의 경우 오스테나이트-페라이트 로의 상변태 등으로, 원자가 결정학적으로 어떻게 배열하느냐에 따라 성질이 달라진다.
- 동소변태는 소재가공 등에 있어서 중요한 주제인데, 합금이나 금속의 기계적 특성이나 전기적 성질 역시 원자의 배열에 따라 차이가 나기 때문이다.
5 상평형그림
항목 상평형그림 참고