Gibbard–Satterthwaite theorem.
투표자들의 선호순위만을 가지고 한 명의 당선자를 뽑는 모든 확정적[1] 투표 방식은 다음 세가지 중 하나에 해당된다는 정리.
- 독재적이다(한 명이 당선 결과를 마음대로 조절할 수 있다.)
- 절대로 투표에 당선될 수 없는 후보자가 존재한다.
- 전략적 투표가 가능하다.
이 정리는 케네스 애로우의 불가능성 정리를 더 일반화시킨 것으로 해석할 수 있다.[2] 현실정치의 의사결정행위에 보다 가까운 수준에서 이야기하자면, 대전략성[3]과 만장일치성[4]을 동시에 만족하는 의사결정수단에는 무조건 독재자가 존재한다고 풀이할 수 있다. 투표자가 투표 행위로 인한 외부성을 배제하고 자신의 정치적 선호를 온전히 투표에 반영시키고, 투표 결과가 사회 전체의 합의로 이어지는 현상은 통념에서 보았을 때 민주주의의 가장 바람직한 모습으로 인식되지만 실제로는 존재할 수 없음을 의미하는 것이다.
애로우의 정리에서 '사회적 의지', '일반의지', '국민의 뜻' 등의 수식어가 일종의 기만에 불과함을 알 수 있다면 기바드-사데르스웨잇 정리는 이를 넘어서 사회적으로 어떤 체제를 취하더라도 언제나 거짓을 통해 이득을 취하는 사람이 존재함을 의미한다고 볼 수 있다. 또한 사회적으로 거짓을 말하는 사람이 얼마나 많은지 알 수 없으므로, 투표를 통해 결정한 내용이 항상 '정당하다'라고 볼 수 없다는 것을 알 수 있다.- ↑ 확률적이지 않은, 즉 똑같은 투표를 여러번 계속해도 항상 똑같은 결과가 나오는
- ↑ 애로우의 정리는 주어진 개인들의 선호체계를 종합하여 사회적인 선호순서(사회후생함수/social welfare function)를 정할 수는 없다는 것이지만, 기바드와 사데르스웨잇의 정리는 개인들의 선호체계가 주어졌을 때 무엇이 가장 좋은 선택(사회선택함수/social choice function)조차도 알 수 없음을 나타내기 때문이다.
- ↑ strategy-proofness; 투표자가 자신의 선호순위와 상이한 선택지에 투표함으로써 인센티브를 획득하는 것을 차단하는 성질. 예를 들어 투표자의 정책적 선호는 약소정당인 B정당에 있으나, 거대정당인 A정당에 투표함으로써 B정당을 지지할 때보다 자신의 이득이 확대될 때 투표 조작에 의한 인센티브가 발생한다며 이야기하며, 이것은 현실정치에 전략적 투표라는 형태로 나타난다.
- ↑ 투표 결과에 있어서 한 선택지가 다른 선택지에 비해 만장일치(투표자 전원)로 순위가 낮을 때, 해당 선택지는 의사결정에서 배제된다.