변분법

변분법(變分法, Calculus of Variations)

1 개요

변분법은 수학의 한 분야로서 범함수의 최소, 최대를 찾는 방법 등을 가리키는 용어이다. 예를 들어 [math] (x_1,y_1) [/math] 이라는 점과 [math] (x_2,y_2) [/math] 라는 점을 연결하는 다양한 곡선들의 집합을 생각해 보자. 이들 중 가장 짧은 것, 즉 두 점 사이의 최단경로는 두 점을 연결한 직선이 된다. 직관적으로는 답을 쉽게 알 수 있지만 그것을 실제로 수학적인 엄밀성을 갖춰 증명하는 것은 쉽지 않다. 또 다른 예로, 일정한 길이의 닫힌 곡선으로 만들 수 있는 도형을 생각해 보자. 무수히 많은 가능한 도형들 중 가장 넓이가 큰 것은 원이 될 것이다. 그러나 그 증명을 위해 모든 가능한 도형들을 만들어 넓이를 비교해 볼 수는 없다.

다양한 물리학 문제가 무언가를 최소화하거나 최대화하는 것을 요구하고 있고 고전역학을 기술하기 위해 도입된 페르마의 원리, 해밀턴의 원리 등을 실제로 적용하기 위해서는 최소 경로, 최소 시간, 최소 액션 등을 주는 운동을 찾아야 하므로 물리학자들에게 오히려 더 친숙한 수학적인 도구라고도 할 수 있다.

변분법 문제를 푸는 방법은 최적화 문제의 1계 조건에서 얻어지는 방정식의 해를 구하는 것이다. 이 1계 조건이 오일러-라그랑주 방정식이다. 오일러-라그랑주 방정식은 풀기 쉬운 특수한 경우가 아니면 보통 비선형 2계 미분방정식이므로 풀기가 상당히 까다롭다. 또한 오일러-라그랑주 방정식은 최적화의 필요조건이므로 그 해가 충분조건도 만족하는지는 2계 조건을 따져 보아야 알 수 있다.

2 역사

변분법은 1696년 6월 요한 베르누이가 Acta Eruditorum에 최속하강곡선(brachistochrone curve) 문제를 다른 수학자들에게 도전문제로 제시하면서 시작되었다. 이 문제에 대해 라이프니츠, 뉴턴, 요한 베르누이 자신, 야콥 베르누이, 로피탈 등이 답을 제출하였다. 그 중에서 야콥 베르누이가 답을 구한 방식이 변분법의 아이디어의 단초가 되었다.

본격적인 변분법에 대한 연구는 오일러부터 시작되며 변분법이라는 이름도 오일러의 저서에서 비롯된다. 이후에 천재 소년 라그랑주가 오일러의 저서를 보고 연구하여 자신만의 개선점을 오일러에게 편지로 알리자 오일러가 자신의 방법을 버리고 라그랑주의 방법을 받아들였다는 것은 유명한 일화다.[1] 그래서 1계 조건 방정식이 오일러-라그랑주 방정식이라고 불린다.

이후에 야코비, 바이어슈트라스 등의 수학자들이 2계 조건에 관한 연구를 진척시켰다. 특히 힐베르트의 23가지 문제중 마지막 변분법에 대한 문제는 그 문제를 설명하면서 힐베르트가 2계 충분 조건의 기존 성과를 정리하고 자신의 연구결과를 덧붙이는 것을 발표하는 것으로 사실상 문제 아닌 문제가 되어버렸다. 이후 변분법은 좀더 유연한 optimal control과 dynamic programming으로 계승되어 발전된다.
  1. 현재의 변분법 과목에서도 라그랑주의 아이디어를 이용해서 1계 조건을 도출하는 방법을 설명한다.