Loading [MathJax]/jax/output/HTML-CSS/jax.js

최대공약수

Greatest Common Divisor, Highest Common factor

1 개요

초등학교 때 배우는 숫자의 관련된 성질 중 하나. 약수에 대해서 먼저 배운 뒤, 바로 배우게 될 것이다. 먼저 공약수란, 이름에서 알 수 있듯이 두 수, 혹은 그 이상의 여러 수의 공통인 약수라는 뜻이다. 최대공약수는 당연히 공약수 중 가장 큰 것. 두 수 a,b의 최대공약수를 수학적 기호로 표시하면, gcd(a,b)이며,[1] 더욱 줄여서 (a,b)로 표기하기도 한다. 특히, gcd(a,b)=1이면 두 수 a,b서로소(relatively prime, coprime)라고 한다.

가끔 최공약수라고 잘못 부르는 경우가 있는데, 최소공약수는 무조건 1이므로 논할 가치도 없다. (...)

2 찾는 법

예시로 두 수 12, 18의 공약수 및 최대공약수를 찾고 싶다고 하자. 간단하게, 두 수의 약수를 모두 나열한다.

12: 1, 2, 3, 4, 6, 12
18: 1, 2, 3, 6, 9, 18

여기서 위아랫줄 모두 같이 있는 숫자가 공약수가 된다. 즉, 이 경우에는 1, 2, 3, 6이 공약수가 된다. 최대공약수는, 찾은 공약수 중 가장 큰 것, 즉 이 경우에는 6이 최대공약수가 된다. 참 쉽죠?

하지만 두 수의 약수를 찾는게 어렵다면 어떻게 될까? 2015와 246의 최대공약수를 약수를 나열하는 방법으로 찾으려면 한참이 걸릴 것이다. 이 문제를 해결하기 위한 방법이 바로 유클리드 호제법. 놀랍게도 기원전에 발견된 인류 최초의 알고리즘이라고 한다. 자세한 것은 항목 참조.

3 성질

두 정수 a,b에 대해서,

  1. gcd(a,b)1
  2. gcd(a,b)=gcd(|a|,|b|)
  3. gcd(a,0)=|a|
  4. d=gcd(a,b)라 하면, gcd(ad,bd)=1
  5. 임의의 정수 k에 대하여, gcd(a,b)=gcd(a+kb,b)
  6. 임의의 양의 정수 a,b에 대해서, ax+by=gcd(a,b)를 만족하는 정수 x,y가 존재한다.[2]

4 증명

  1. 1a,1b이므로, 두 수의 최대공약수는 1보다 크거나 같다. 즉, gcd(a,b)1.
  2. xaxa는 동치이다. 그런데 |a|a 또는 a이므로 a|a|는 같은 약수를 갖는다. 마찬가지로, b|b|는 같은 약수를 갖는다. 따라서, xab의 공약수라는 것은 |a||b|의 공약수라는 사실과 동치이다. gcd(a,b)=gcd(|a|,|b|)
  3. 2번으로 부터, gcd(a,0)=gcd(|a|,0)이다. |a|0=0이므로, |a|0. 또한, |a||a|이므로, |a||a|와 0의 공약수이다. 그러므로 |a|gcd(|a|,0)이다. 그런데 gcd(|a|,0)|a|이므로, gcd(|a|,0)|a|. 위 두 부등식으로 부터 gcd(|a|,0)=|a|. 다시 한번 2번으로 부터, gcd(a,0)=gcd(|a|,0)=|a|.
  4. a=dm,b=dn라 하면, gcd(ad,bd)=gcd(m,n)이다. 양의 정수 ppm,pn를 만족한다고 하자. 그러면 m=pe,n=pf를 만족하는 정수 e,f.가 존재한다. 따라서, a=dpe,b=dpf이고 dpa,b의 공약수이다. 한편, d는 최대공약수이므로, ddp. 따라서 p1이고 p=1일 수 밖에 없다. 이로써 보이고자 하는 바가 증명되었다.
  5. 만약 xa,b의 공약수라면, xa,xb이다. 따라서 xkb이고, xa+kb이다. 따라서 xa+kbb의 공약수이다.
    역으로, xa+kbb의 공약수라면, xa+kb,xb이다. 따라서 xkb이고, x((a+kb)kb)=a이다. 즉, xa,b의 공약수이다. 따라서 a,ba+kb,b는 같은 공약수 집합을 가지므로 최대공약수도 같아야 한다.
  6. 집합 A={ax+by>0|x,yZ}를 생각하자. 집합 A자연수의 부분집합이고 공집합이 아니므로 well-ordering 원리에 의해 가장 작은 원소가 존재한다. 이를 d라 하면 적당한 정수 x,y에 대해 d=ax+by이다. 여기서 d가 최대공약수임을 보이면 증명이 끝난다.
    d>0이므로, 나눗셈 정리에 의하여 a=qd+r,0r\ltd인 정수 q,r가 존재한다. 그러면 r=aqd=aq(ax+by)=a(1qx)b(qy)이므로 r>0이면 rA이고, r\ltd가 되어 d가 가장 작은 원소라는 사실에 모순된다. 따라서 r=0이고, da이다. 마찬가지로 db이다. 즉, dgcd(a,b).
    한편 ea,b의 공약수라면 e(ax+by)이고,[3] ax+by=d이므로 ed, 즉 ed이다. 이는 곧 d가 최대공약수임을 보인다.

5 관련 항목

  1. 이동 gcd는 Greatest Common Divisor, 영어로 최대공약수의 약자이다.
  2. 이동 만약 두 수가 서로소이면 ax+by=1를 만족하는 정수 x,y가 존재함을 의미한다. 역도 성립한다.
  3. 이동 5번 성질 참조