피토관

상위항목 : 항공기 관련 정보

영어로 "pitot tube(피토튜브)"라 한다. pitot는 이 원리를 개발한 18세기 프랑스인인 Henry Pitot이란 사람의 이름을 딴 것이다.
피를 토하진 않는다

피토관은 흐르는 유체(기체건 액체건 상관 없다)의 속도를 측정하는 장치다. 특히 항공기의 비행속도는 이것을 이용한다. 물론 항공기의 경우에는 정확히는 그 자체의 비행속도라기 보다는 항공기가 나가면서 생기는 맞바람의 속도를 측정하는 셈이지만.

Pitot_tube_diagram.png

원리 자체는 심플하다. 관 앞쪽 작은 구멍이 뚫려 있으며 관 옆구리, 혹은 별도로 마련된 항공기 옆구리에 또 다른 구멍이 뚫려 있다. 그리고 이 관 앞쪽 구멍은 비행기 정면을 향한다. 그리고 이 각각의 관에는 압력계가 달려 있다. 피토관, 혹은 비행기 옆구리에 뚫린 구멍으로 압력을 측정하면 비행기 속도와 관계 없이 주변 대기압만 측정된다. 반면 비행기 정면을 향한 피토관 앞쪽 구멍은 대기압 + 밀려 들어오는 맞바람이 만드는 압력이 함께 측정된다. 주변 대기압은 정압(static pressure)이라 부르며 피토관 앞쪽 구멍의, 대기압+밀려들어온 맞바람이 만든 압력을 전압(total pressure)라 부른다. 그러면 이제 전압에서 정압을 뺀 나머지 압력은 순수하게 맞바람에 의해서만 만들어진 압력이다. 이를 동압(dynamic pressure)라고 부른다. 이렇게 측정된 동압을 이용하면 속도를 계산할 수 있다. [1]

사실 맞바람의 속도는 대체로 항공기의 속도와 같지만 항상 같지는 않다. 즉 비행기 정면에서 별도의 바람이 불어온다면 피토관의 속도는 실제 비행기가 날아가는 속도 보다 더 큰 값을 나타낼 것이다. 하지만 항공기의 속도 표시에서 확인할 수 있듯, 항공기에게는 실제 비행속도 보다는 맞바람의 속도가 중요할 수 있다.

항공기에게 있어서 레이더나 INS, GPS 등을 이용한 속도 측정장치가 개발 되기 전까지는 피토관이 유일한 속도 측정 수단이었다. 사실 피토관 이외의 다른 수단으로 측정하는 속도 값은 항공기 자체의 실제 비행속도지만(주로 목적지 도착 예상 시간을 계산하는데 사용), 피토관이 측정하는 속도는 항공기의 조종에 매우 중요한 대기속도이기 때문에(항공기의 양력항력 및 비행 특성 등은 대기속도에 따라 변한다) 지금도 거의 모든 항공기에는 피토관이 필수적으로 달린다.

피토관은 최초기의 항공기를 제외한 모든 항공기에 장착되어왔다. 심지어 우주왕복선에도 달려 있다. 다만 이 쪽은 다른 항공기들과 달리 수납식인데 이러한 이유는 역시나 재돌입 과정에서 발생하는 문제를 방지하기 위함이다.


디스커버리 노즈기어 도어 상부에 작은 대각선으로 보이는 것이 바로 피토관


보잉 787의 피토관

다만 측정 방법이 기압을 이용한 것이기 때문에 오차가 생길 수 있는 변수가 상당히 많다. 예를 들어 지형의 심한 기복, 날씨(기압의 변화), 습도 등. 이런 변수들에 의해서 값이 변할 수 있기 때문에 항공사들은 자사의 항공기에 대한 매뉴얼에 여러 변수에 의한 피토관의 오차를 표기한다.

게다가 항공기 자체의 비행자세나 속도에 따라 주변의 정압이나 동압이 변하기 마련이므로 이 점도 고려해야 한다. 특히 아직 개발 진행중인 프로토타입 항공기들은 매우 긴 피토관을 달고 있는데, 이런 항공기 자체가 피토관에 주는 영향을 최소화 하기 위해서다. 보통 이 피토관으로 데이터를 많이 모은 다음, 나중에 양산형에는 더 작은 피토관을 다는 대신 항공기의 영향 등이 보정되어 들어가도록 만든다.

avf22_6.png
위 그림에서 왼쪽의 YF-22는 프로토타입, 오른쪽의 F-22는 양산형이다. 프로토타입 기수 앞에는 뾰족한 피토관이 길게 뻗어 있다.

전투기의 경우 과거 동체에 영향을 덜 받는 기수쪽에 이 장비를 달았다. 보통 기수 제일 앞에 뾰족하게 달리는것이 이 피토관. 그러나 최근에는 작은 피토관을 여러개 다는 것이 대세가 되었는데, 속도 계산 등에 일종의 컴퓨터를 쓰다보니 보정 기술도 늘었고, 또 플라이 바이 와이어 시스템에 각각의 비행제어 컴퓨터에 각각의 속도 값을 따로 주는 일종의 백업 개념이 들어가서 그렇다.

IMFP-1-300x178.png
최근에는 통합형 비행데이터 계측기라 하여 피토관 역할 + 받음각 측정기 역할을 겸하는 장치도 나왔다. 게다가 위 그림에서 보듯 생긴 것도 매우 심플하다. 크기가 작으니 공기저항도 줄고, 특히 스텔스 항공기들은 레이더 반사 면적도 줄일 수 있어 좋다.

속도를 측정하는 장치이므로 피토관이 막히거나 고장나서 나는 사고도 빈번하다. 페루 항공 603편(수리 중 막아놓은 것을 실수로 안 떼서 고장.), 버겐에어 301편(피토관에 벌집(...)이 생김), 에어 프랑스 447편, 2008년 에서 추락한 미군B-2 폭격기(둘 모두 피토관에 물이 참)의 추락 원인도 이 계통의 문제. 특히 최신예 항공기들은 플라이 바이 와이어로 움직이므로 컴퓨터는 전적으로 이 피토관이 측정한 속도값을 기반으로 항공기의 속도를 판단하고 비행제어 명령을 내리는데 이 속도 값이 잘못되면 조종사가 손쓰지 못하고 추락하는 사고가 생긴다. B-2의 추락사고가 대표적.

우리나라 공군참모 총장이 탑승한 UH-60 헬기가 갑자기 추락하는 사고가 있었는데 이것도 피토관 이상 때문이었다. UH-60 수평꼬리날개의 각도를 자동으로 조절하는 장치가 일종의 피토관을 이용하여 속도값을 측정하는데 하필 거기에 벌레가 들어가서 비행중임에도 피토관은 속도가 0이라고 잘못된 신호를 보내서 순항 비행중임에도 수평꼬리날개가 갑자기 호버링 모드로 움직여 조종사가 대처하지 못하고 추락해버렸다.[2]

피토관은 종류에 따라 두 개의 구멍으로 이루어져 있는데 하나는 공기가 들어오는 구멍, 다른 하나는 배수관이다. 이런 것은 공기구멍만 막히면 속도계가 완전히 고장나 0을 가리키지만, 둘 다 막히면 고도계가 된다(...) 그러므로 항공기를 몰 때는 조심하자. 잘못된 속도 정보를 기반으로 비행하다가 실속에 빠져서 그대로 시밤쾅!

  1. 동압=0.5*공기밀도*속도^2 이므로 이를 역으로 계산하면 속도를 알 수 있다. 단 이는 매우 느린 속도에서만 통하는 이야기고, 속도가 마하 0.3만 넘어가도 공기가 속도에 의해 밀도가 변하는 압축성 기체로 변하므로 여기에 대한 보정식을 추가로 넣어 줘야 한다. 특히 밀도나 압력변화가 급격한 초음속 비행을 위해서는 또 다른 수식 등을 이용하여 계산해야 한다.
  2. 이 때문에 사망한 공군 참모총장이 22대 공군참모총장이었던 고 조근해 전 공군참모총장이다. 당시 우리나라에서 비전시 상황에 사망한 공군 고위 장교로써는 이 분이 첫 번째인지라 상당히 여러 음모론이 나돌았고 유족들은 헬기 제작사에 소송을 청구하였으나 패소했다. 자세한 사항은 22대 고 조근해 전 공군참모총장 항목과 UH-60 항목참조.