실속

失速.
영어로는 stall.

1 개요

관제탑 : "공군 1733기, 당신들은 27R 활주로에 8마일까지 접근했다. 당신들 3마일 전방에서 UH-1 헬기가 착륙접근중이다. 130노트로 감속하라"
조종사: "프랑크푸르트, 잘 알았다. 130노트로 감속하겠다."
관제탑 : (몇분후) "공군33, 이제 헬기가 당신네 1.5 마일 전방에서 90노트로 가고 있다. 110노트까지 더 감속하라"
조종사: (이를 악물고) "공군33, 다시 110노트로 감속한다."
관제탑 : "공군33, 활주로까지 3마일 남았다. 이제 헬기가 1마일 전방에 있다. 90노트로 감속하라"
조종사 : (드디어 폭발) "어이! 당신 이 C-130 수송기의 실속속도가 얼마인지 아는가?"
관제탑 : (잠시 정적) " 어... 잘 모르겠다. 그렇지만 당신 부조종사에게 물어보면 아마 가르쳐 줄거다"
* C-130의 실속 속도는 95노트다.(약 175.54km/h) 조종사가 빡칠 만도 하다. 그래도 이해가 안된다면 이렇게 설명하겠다. C-130이 실속할 경우 그 속도가 95노트다. 근데 그거보다 5노트 더 적은 90노트로 감속하라는건 실속으로 추락해 뒤지라는 소리다...
관제탑 유머중 하나

항공기가 만들어 낼 수 있는 최대 양력 이상의 양력을 만들어 내기 위하여 받음각을 지나치게 높였을 때 유동의 박리로 인하여 양력이 감소하고 항력이 급증하며, 이로인하여 조종성을 잃고 추락하는 것.

실속한 비행기가 추락하는 모습영상에 대한 해설은 이 링크를 참조[1] 급선회로 인해 실속하는 장면[2]

2 실속현상에 대하여

항공기가 고도를 유지하려면 최소한 현재의 항공기 중량은 끌어 올릴 만큼의 힘, 즉 중량과 같은 양 이상의 양력을 만들어내야 한다. 항공기에서 발생하는 총 양력의 크기는 항공기 주변의 유동조건, 항공기의 형상에 의하여 결정되게 된다. 특정한 조건에서 항공기가 발생시킬 수 있는 최대 양력의 크기는 한계가 있으며, 이때 항공기가 발생시킬 수 있는 최대양력의 크기가 항공기의 중량보다 작아지게 될때의 속도를 실속속도라 한다 [3]. 최대양력이 발생하는 지점은 항공기가 가질 수 있는 최대 크기의 받음각이 되는데 이 이상으로 받음각을 높이게 되면 실속이 발생하여 추락하게 된다. 이러한 형태의 실속은 저속에서, 특히 이착륙시에 자주일어나게 된다. 또 다른 경우로는 지나친 급선회를 할 때 발생하는데 선회를 하기위해서 항공기는 양력을 구심력으로 사용하게 되어 더 작은 선회각을 가지기 위해서는 더 큰 양력이 요구된다. 당연하게도 이때 역시 항공기가 자신이 만들어 낼 수 있는 최대의 양력이 존재하고 이 양력의 크기에 의해서 최대선회각이 결정되게 되는데 조종사가 한계 이하의 선회각을 만들어 내기 위하여 지나치게 받음각을 키우게 되면 실속이 발생하게 된다. 즉 이 두 경우 모두 지나치게 높은 받음각이 원인이 되어 발생하는데 이러한 받음각의 한계는 뒤에서 설명한다.

실속속도에 대하여 보충하자면 이는 고정된 값이 아니고 유동조건 (속도, 밀도 등)에 따라 달라지며, 항공기의 무게에 따라 요구되는 최소한의 양력의 크기가 달라지기 때문에 무게 역시 실속속도에 영향을 준다. 예를 들어 비행 고도가 낮고 대기온도가 낮아 공기 밀도가 높아질 경우 평소보다 더 큰 양력을 얻을 수 있으므로 실속속도가 낮아지게 된다.[4] 반대의 이유로 고도가 높은 곳에 있거나 더운 지방에 있는 공항에서 비행기가 뜨고 내릴 때 평소보다 실속속도를 더 여유있게 잡아야 한다.[5]

실속현상은 항공기의 설계에 있어서 중요하게 고려되는데 이는 항공기의 이착륙 성능과 기동성에 큰 영향을 미치기 때문이다. 항공기의 실속 속도가 느리다면 이착륙시 더 느린 속도로 뜨고내릴 수 있으므로 활주거리도 짧아지고 타이어 수명을 늘릴 수 있으며 행여 비상착륙 할 때도 더 안전하다. 군용 항공기의 경우에는 실속속도가 더욱 중요한데 군용 항공기는 비상활주로나 간이활주로에서 작전하는 경우가 종종 있으며, 아군 기지가 공격 받아 활주로 복구가 다 안된 상태에서도 어느정도 작전에 임할 수 있어야 하기 때문이다. 특히 함재기항공모함의 짧은 갑판 활주로에서 뜨고 내려야 하므로 실속 속도를 낮추는게 중요하다. 이러한 실속속도를 낮추기 위해서 항공기를 설계할때 항공기가 가질 수 있는 최대양력계수를 높이기 위해 노력한다. 높은 최대 양력계수는 또한 앞서 설명한 것으로 부터 알 수 있듯이 더 큰 양력을 만들 수 있게되어 더 우수한 기동성을 가질 수 있게 해준다. 플랩이나 슬랫등의 고양력 장치는 이를 위하여 존재하며 특히 앞전플랩은 뒤에서 설명할 유동의 박리를 지연시켜 에어포일이 더 높은 받음각을 가질 수 있게 해주며 이를 통해 선회시 더 큰 양력을 만들어 낼 수 있게 하기 때문에 많은 전투기에 장착되어있다. 실속과 직접적 연관은 없으나 고양력 장치와 함께, 날개 면적 대비 무게(익면하중)을 작게 하여 양력의 발생량 자체를 증가시키는 방법도 있다.[6] 참고로 알아두도록 하자. 이러한 공기역학적 관점에서의 솔루션 뿐만 아니라 엔진에서 발생하는 추력을 사용하는 경우도 있으며, 전투기들은 상당히 강력한 엔진힘을 이용, 부족한 양력을 엔진의 추력으로 보태서 뜨는 힘을 만들 수 있다. 이를 적극적으로 활용한 형태로 TVC(Thrust Vectoring Control)이라는 기술이 있는데, 이는 엔진의 배출 가스의 방향을 노즐을 조절하여 변화시켜 원하는 방향으로 힘을 더해주는 기술이다. 이와 비슷한 경우로 AV-8 해리어 같은 일부 특수한 수직착륙이 가능한 기종들은 엔진 분사구 방향 자체를 바꾸어 심지어 양력을 만들지 못하는 정지 비행 상태에서도 고도를 유지할 수 있다. 이러한 비행기들의 경우 실속에서 좀 더 자유로울 수 있다.

당연한 이야기지만 헬리콥터의 경우 실속속도의 개념은 없느나, 헬리콥터 역시 로터에서 발생하는 양력으로 비행함으로 실속이 발생 할 수 있다. 다만 로터에서 발생하는 실속은 일반적인 고정익기와는 조금 다른 특성을 나타낸다.

이러한 실속은 사고로 이어지기 쉬운데, 앞서 언급하였듯이 항공기가 이착륙할때 실속이 자주 일어나게 되며 또한 급선회 시 발생하게 된다. 실속에 빠지게 되면 항공기가 양력을 잃으면서 고도를 잃게 되는데 특히 이착륙 시에는 고도가 매우 낮기 때문에 땅에 그대로 충돌 할 가능성이 매우 높다. 뿐만아니라 이착륙시 활주거리를 줄이고 랜딩기어와 브레이크의 부담을 줄이기 위해서 최대한 높은 받음각을 유지하며 속도를 최대한 작게 하게 되는데 이렇듯 높은 받음각에서 주변 유동이 급격하게 변하거나 조종사의 실수, 기체결함등으로 항공기가 한계를 넘겨 실속이 발생하게 되면 그대로 추락해버리는 경우가 많다. 그래서 많은 사고가 이착륙시 발생하게 되며 이러한 사고를 줄이기 위하여 많은 노력을 하고있다. 이와 다르게 선회시에는 한쪽 날개만 실속에 빠져 스핀현상이 발생 할 수 있는데 이때 항공기는 조종성과 안정성을 상실하게 되며 양력을 잃었으므로 추락하게 된다. 이때 추락하면서 어느정도 자세가 안정되게 되면 조종성을 회복하며 실속에서 빠져나올 수 있는데 충분한 고도가 없다면 땅에 충돌하여 사고가 발생하게 된다. 참고로 실속이 발생하였을때 조종성과 안정성을 상실하는 것은 박리유동때문이다. 비행기는 조종면의 각도를 변화시켜 유동의 흐름의 방향을 바꾸어 양력의 크기를 바꾸거나 모멘트를 변화시키는데 유동이 박리하여 에어포일에서 떨어져 나간 경우 유동의 흐름을 효율적으로 변화시키는 것이 힘들어져 조종성을 상실하는 경우가 발생한다. 또한 이러한 박리유동은 비정상(unsteady) 유동으로 항공기에 작용하는 힘이 계속해서 변화하게 되어 안정성을 잃을 수 있다.

실속은 방패연에서도 발생하며 방패연을 날려보았다면 이를 겪어본 적이 있을 것이다. 일단 바람이 없거나 약하면 애시당초 양력이 발생하지 않아 연이 뜨지 않게 된다. 그런 경우 연줄을 잡고 뛰어서 속도를 내어 양력을 발생시키려 몸부림을 치게된다. 또한 멀쩡히 잘 날던 방패연도 바람의 방향이 갑자기 바뀌든가 해서 각도가 안 맞으면 갑자기 지상을 향해서 돌격하게 되는데 이것이 실속이다.

3 최대 양력의 한계와 실속의 형태

실속은 항공기의 양력이 감소하고 항력이 급증하는 현상을 말하며 실속이 일어나기 직전의 양력계수의 크기를 최대양력계수라 한다. 즉 항공기가 가질 수 있는 최대 양력의 크기는 실속이라는 현상에 의하여 한계를 가지게 된다. 실속의 원인을 간단하게 말하면 경계층 박리로 인하여 발생하는 압력항력의 급격한 증가에 따른 총 항력의 증가와 함께, 부착유동에 비해 높은 압력을 발생시키는 박리유동에 의하여 만들어지는 에어포일 윗면의 압력 증가로 인한 양력의 감소이다.

이때 경계층 박리는 유체의 점성력의 큰 영향은 받는 경계층이라는 얇은 층이 에어포일 표면으로 부터 떨어져 나가면서 발생한다. 경계층에 대해 간단히 설명하자면 에어포일 표면의 유체입자는 에어포일 표면에 점착되며, 이들의 에어포일에 대한 상대속도가 0이된다. 이 점착된 입자로 부터 만들어 지는 점성력으로 인하여 유체 입자의 속도가 느려지게 되며 이들은 에어포일 표면으로 부터 멀어질수록 자유유동의 속도에 가까워져간다. 이때 자유유동의 속도에 비하여 속도가 작은 층을 경계층이라 한다.[7] 그런데 에어포일 표면에서 역압력 구배가 형성되면(유동의 방향에 따라 진행할수록 압력이 증가하는 상태) 유체입자는 압력을 이겨내면서 운동해야하는데, 유체의 점성력으로 인하여 속도가 떨어진 유체 입자들은 에너지가 감소하게 되고, 이들은 압력이 만들어내는 힘을 견디지 못하여 역류하게 된다. 이렇게 유동이 역류하게 되면 와류가 형성되게 되고 이로 인하여 에어포일 표면에서 유체의 흐름이 떨어져 나가게 된다. 이러한 역압력구배는 받음각이 커질 수록 강해지며, 이로인하여 실속이 발생하지 않는 받음각의 범위가 존재하여 최대양력에 한계가 만들어지게 된다.

오해가 있을 수 있어 추가적으로 설명하자면 받음각은 항공기의 지면에 대한 자세가 아닌 자유유동의 진행방향에 대한 항공기의 자세를 의미한다. 즉 그냥 보기에는 멀쩡하게 수평의 자세를 취하고 있어도 속도가 지나치게 느려 고도를 유지하기 위한 충분한 양력을 가지지 못하고 이로인하여 낙하할 때 지면에 대한 y축 속도가 지나치게 빨라지게 되는 경우, 항공기의 관점에서 실질적인 받음각은 증가하게 되고 이는 실속으로 이어진다. 단순히 양력이 부족하다고 바로 실속이 일어나는 것이 아니라 양력이 부족하여 지나치게 빠르게 고도가 감소할 때, 이 낙하 속도가 증가함에 따라 받음각이 증가하게 되고[8] 결국 어느 수준에 이르러서는 항공기에게 허용된 최대 받음각을 넘어서 실속에 빠지게 된다.

참고로 최대양력계수는 레이놀즈수에 민감하게 반응한다. 즉 레이놀즈수에 따라 한계 받음각의 크기가 달라지게 된다. 레이놀즈수는 유체의 특성을 나타내는 무차원수로 정성적으로 표현하자면 관성력/점성력을 나타낸다. [9] 이때 레이놀즈수는 속도가 높아질수록, 특성길이(에어포일의 경우 시위선,즉 앞전과 뒷전의 끝점을 이은 선의 길이)가 길어질수록 커지며, 점성력이 높을수록 낮아지는데 낮은 레이놀즈수는 점성력에 큰 영향을 받는다고 볼수 있다. 정리하자면 레이놀즈수가 낮아짐에 따라 점성력의 영향이 커지고 앞서 언급한 역류가 더 쉽게 일어나게 된다.

에어포일의 실속 형태는 크게 두가지 종류가 있는데 한가지는 앞전실속이고 두번째는 뒷전실속이다. 앞전실속은 유동이 앞전에서 부터 박리되며 이 경우 임계각을 넘으면 박리된 유동이 에어포일 전체를 덮으면서 급격한 실속이 발생한다. 이와 반대로 뒷전실속은 에어포일의 뒷전에서 부터 박리가 시작되는데 받음각이 커짐에 따라 이 박리 영역이 앞전으로 서서히 넓어져 가며 결과 완만한 실속이 발생한다. 받음각에 따른 양력계수의 그래프를 보게 되면 앞전실속의 경우 일정각 이상에서 수직으로 양력계수가 떨어지는 것을 확인 할 수 있고 뒷전실속의 경우에는 양력계수가 곡선을 이루면서 서서히 감소하는 것을 확인 할 수 있다. 앞전실속은 얇은 에어포일이나 날카로운 앞전을 가진 에어포일에서 주로 나타나며 뒷전실속은 주로 두꺼운 에어포일이나 뭉툭한 앞전을 가진 에어포일에서 나타난다.

4 실속에 빠지지 않으려면

관련된 개념으로 실속안정성이라는게 있는데 이것은 실속시 얼마나 실속 상태에서 잘 빠져나오는가 하는 능력이다. 보통 크고 넓고 직선형 날개를 가질수록 속력은 낮지만 실속에 잘 안빠지는데 간단한 예로 중급 훈련기인 KT-1 같은 경우에는 대단히 우수해서, 비행사가 조종간을 놓아버리면 알아서 저절로 실속에서 벗어난다고 하며 초급 훈련기인 T-103[10] 같은 경우 웬만해선 일부러 실속시키기도 어렵다고 한다. 실제로 얼마전 있었던 한국군의 LN-2[11]가 추락한 사고도 실속이 아니라 저공비행중 전깃줄에 걸려서(...) 였다. [12]

반대로 최악의 예로는 F-104가 있다. 날개가 작은데다가 날개 앞전이 매우 날카롭게 생겨서 실속에 잘 빠질 뿐만 아니라 일단 빠지면 동체가 부메랑처럼 회전하는 경우가 많았고, 그 영향으로 엔진까지 꺼지기 때문에 조종사의 사망률이 대단히 높았다. 그래서 별명이 과부제조기 항공기의 경우 엔진이 꺼지게 되면 어떤 일이 일어나는가... 는 자동차에서 엔진이 꺼졌을 때 브레이크가 안 듣고, 핸들이 돌아가지 않는 상황보다 더 심각하다고 예상하면 된다.

또다른 최악의 예로 F-100이 존재하는데, 기체 설계 미스 때문에 착륙시 플레어(뒷바퀴가 땅에 먼저 닿게 하기 위한 동작)를 하게 되면 실속하면서 기수가 더 올라가버려 아에 벽돌이 되어 양력을 잃어버리고 땅으로 곤두박질 쳐버리는 경우가 많았다고 한다. 이 때문에 상당한 비전투 손실을 보게 되었고, '세이버 댄스'라는 용어도 생겨날 정도로 기피 기체가 된다. 이 세이버 댄스가 정말로 치명적이었던 이유는 착륙시 발생하는 데 기인하는 것으로, 고도가 낮을 때는 실속이 발생하면 지면에 떨어지는 수 밖에 없기 때문이다. 사실 F-104의 경우는 설계 목적(고공 요격기)에 부합하게 운영하면 이렇게 될 여지가 적었지만 이 경우는 이착륙시 발생했던 문제라 더 최악이라 볼 수 있다.

일반적으로 직선익을 가진 항공기는 실속 속도가 낮다. 대표적인 예가 An-2세스나의 소형기들. 후퇴익을 가진 제트기들은 여객기라 할지라도 실속 속도가 200-300km/h를 넘는다. 이러한 이유는 직선익이 후퇴익보다 대체로 같은 속도라도 양력을 더 많이 만들기 때문. 물론 직선익기는 대체로 소형항공기여서 날개크기에 비해(즉 양력발생량에 비해) 기본적으로 워낙에 가벼운 것도 한가지 이유다. 어차피 항공기 입장에서는 양력을 10kg을 만들건 100kg을 만들건 자기 몸무게만 버틸만큼 만들면 실속에는 안빠지는 셈이니.

실속에 대한 개념을 안드로메다로 날려버린 비행기들이 있는데 특이하게도 둘 다 러시아(사실은 소련)제 비행기들이다.

  • Su-27코브라기동코브우라!을 선보임으로써 항공 업계를 충격과 공포에 빠뜨렸다. 받음각과 실속 속도에 대한 개념을 살포시 무시;;; 그렇다고 Su-27이 실속에 안 빠지는 건 아니다. 이 경우는 엔진의 추진력이 매우 높아서 양력 손실을 잠시나마 커버 할 수 있거니와 추력 편향 노즐이 달려있어[13] , 항공기의 조종면(러더, 엘리베이터, 에일러론)으로 제어하기 힘든 높은 받음각이나 저속상황에서도 충분한 자세제어가 가능하기 때문.. 추중비가 1이상이면 날개가 없어도 하늘에 떠오를 수 있다. 이건 일반적인 비행기가 날듯이 나는건 아니고 로켓이 쏘아올려 지듯이 엔진의 추력에 의한 반작용으로 떠오르는 거다.
  • An-2공식적인 실속 속도가 없는 비둘기 비행기이다. 조종사 매뉴얼에 의하면 시속 50km 이하에서는 낙하산이 떨어지는 속도로 강하할 뿐... 비행안정성을 잃지 않기 때문에 그냥 조종해서 착륙시키면 그만이다. 역풍속에서는 후진도 가능하다. 사실 이 비행기는 비행기가 아니라 동력기를 장착한 (Kite)에 더 가깝다

5 실속이 일어나면

실속이 일어나면 양력이 부족해서 비행기가 떨어진다. 땅에 닿기 전에 비행상태로 돌아오면 다행이지만, 그대로 떨어진다면....

생각보다 실속에서 빠져나오는 방법은 간단하다. 항공기가 낙하하면서 기수가 아래로 내려가면 낙하로 얻은 속도로 실속에서 빠져나올 수 있다. 최신 항공기라면 기체의 안정성을 믿고 그냥 조종간을 놔버리면 스스로 회복한다. 아예 일부러 기수를 아래로 숙이기도 한다. 물론 실속에 빠졌을 때 고도가 너무 낮다면....

항공사고를 다룬 수많은 미디어에서 추락중인데도 기수를 더 숙이는 장면이 나오는 것이 이 때문. 동력이 없어도 위치에너지를 쓰면서 착륙할 때까지 비행하는 것이지만, 역시 쉽지 않다. 물론, 파일럿 훈련시 겪는 과정 중 일부이지만 이런 상황은 절대 피해야 한다는 것을 전제로 한다.

그런데 항공기의 종류나 상황에 따라 딥 스톨(Deep Stall)이라하여 실속에서 빠져나오는것이 매우 어려운 현상이 발생한다. 기수를 숙여서 받음각을 줄이고 속도를 높이려면 수평꼬리날개(정확히는 엘리베이터)가 제대로 역할을 해주어야 하는데 실속시 발생하는 주날개의 후류등에 의해 수평꼬리날개가 기수를 아래로 숙이는 힘을 만들지 못하는 상황. 이 경우 항공기는 기수가 들린채로 한참을 떨어지며, 최악의 경우 회복하지 못하고 추락하기도 한다.

컴퓨터로 제어된다는 F-16도 상황에 따라 이 딥 스톨 현상이 생긴다. 이 경우 F-16은 기수가 위아래로 주기적으로 움직이는데 이 주기적인 움직임이 계속 반복만 될 뿐, 빠져나오지를 못한다. 그래서 엔진출력을 최대로 높이는 한편 컴퓨터 제어를 꺼버리고 일부러 더 크게 흔들리도록 유도해서 흔들림 운동의 균형을 깨버리면 다시 항공기를 제어할 수 있게 된다. 다만 이렇게 빠져나오기까지 보통 3km 이상 고도가 떨어져버리므로 만약 그 정도 고도가 확보되지 않은 상태에서 딥 스톨에 빠져버리면 비상탈출 이외에는 답이 없다. 그러니까 F-16에도 추력 편향 노즐을 답시다.(응?) [14]

Herbst 박사는 실속 이후 기동 가능성에 대해 연구했는데, 여기서 J-Turn 같은 Stall 기동이 나왔다.

추력대 중량 비가 1을 넘는 항공기는 아예 추진력으로 몸체를 들어올릴 수 있어서 헬리콥터처럼 띄워 실속 상태를 씹어먹을 수 있다. 동체무게에 비해 동력이 매우 강력한 RC비행기의 경우 기수를 치켜올려 헬리콥터처럼 띄워 파손을 방지한다. 추력깡패인 F-22는 이렇게 하면 된다. 평범한 비행기로 저렇게 이륙하면 이렇게 된다. 다만 최신형 여객기로는 가능한 듯. 물론 이런 짓을 했다간 승객들은....[15]

6 관련항목

  1. 아프가니스탄에서 화물기가 로켓포 공격에 대비해서 이륙 후 급상승을 하려다 실속에 빠졌다. 정확히는 뒤에 군용 차량을 싣고 있었는데, 이 차량의 고정이 풀리면서 화물기의 뒤로 이동해버렸고, 그로 인해 무게중심이 뒤쪽으로 가버린 탓에 실속해 추락한 상황.
  2. 6분부터 시청하면 된다.
  3. 무슨 짓을 해도 절대 요구되는 양력을 만들어 낼 수 없는 속도
  4. 속도가 높을 수록 더 큰 양력을 얻게되는데 특정한 속도에서 얻을 수 있는 최대양력의 크기가 높아지게 된다면 그보다 낮은 속도로도 비행이 가능하게 된다.
  5. 게다가 낮은 공기밀도, 더운 공기는 엔진출력에도 영향을 미치므로 이륙거리가 더 늘어난다.
  6. 익면하중을 줄이기 위하여 날개면적을 키우면 항력이 커져서 순항속도가 느려진다던지, 연료소모량이 는다던지, 돌풍등에 더 민감하게 반응한다던지, 급기동중 날개가 부러지지 않고 버티게 하려고 더 튼튼한(=무거운) 구조물을 써야 한다던지 하는 역효과가 있으므로 설계자들은 이를 항상 고민하게 된다.
  7. 참고로 이러한 경계층에서 점성력으로 인하여 발생하는 전단응력은 표면마찰항력의 원인이 된다
  8. x축 속도가 그대로인대 y축 방향으로 속도가 증가하면 총 속도의 방향의 각도는 커지게 된다
  9. 참고로 유체의 점성계수는 온도에 의존하는 함수이며 온도가 높을수록 커진다
  10. 말이 T-103이지 실재로는 IL-103이라고 이것도 러시아제다.
  11. 위에서 설명한 An-2
  12. 이것으로 북한군이 야간에 저공비행으로 남한을 침입한다는 게 얼마나 어려운 일인가를 단적으로 알수 있다. 대낮에도 전깃줄에 걸려 추락하는 수준인데...(사실 전깃줄은 상당히 튼튼해서 아파치는 물론 MiG-21같은 대형 전투기들도 걸렸다 하면 추락하기 일쑤다.)
  13. 사실 Su-37, Su-30MKI, Su-35BM쯤은 가야 달려있다
  14. 근데 나사에서 마개조한 F-16 MATV라는 녀석은 추력편향노즐을 달아버렸다!!
  15. 에어쇼를 위해서 연습비행을 했다고 한걸로 봐서는 787에 탑재된 엔진의 성능과, 이런 곡예비행이 가능할 정도로 가벼운 동체를 광고하기 위한 비행인듯 하다. 상기한 RC비행기의 경우처럼 동체무게에 비해 동력이 강력하면 이처럼 수직으로 이륙이 가능하기 때문이다