대수학 | |||||||||||||||||||||||
이론 | |||||||||||||||||||||||
기본대상 | 방정식 ・ 부등식 ・ 산술 | ||||||||||||||||||||||
수 체계 | 실수 · 복소수 · 사원수 | ||||||||||||||||||||||
구조와 관심대상 | |||||||||||||||||||||||
군(Group) | 군의 작용, 실로우 정리 | ||||||||||||||||||||||
환(Ring) | 가환대수학 | ||||||||||||||||||||||
체(Field) | 갈루아 이론 | ||||||||||||||||||||||
가군(Module) | |||||||||||||||||||||||
대수(Algebra) | |||||||||||||||||||||||
정리 | |||||||||||||||||||||||
대수학의 기본정리 · 나머지 정리 | |||||||||||||||||||||||
다항식 · 유클리드 호제법 · 대수#s-1 · 노름 | |||||||||||||||||||||||
분야와 관심대상 | |||||||||||||||||||||||
대수학 | |||||||||||||||||||||||
정수론 | 대수적 정수론 · 해석적 정수론 | ||||||||||||||||||||||
선형대수학 | 벡터 · 행렬 · 선형변환 | ||||||||||||||||||||||
대수기하학 | 스킴 · 모티브 · 사슬 복합체 |
1 정의
체 F에 대해, n차 정사각행렬 A, B가 상사(similar)라 함은 P∈GLn(F)가 존재하여, A=PBP−1인 것이다. 이 경우, A∼B라 표현한다.
2 의미
P∈GLn(F)는 Fn의 기저 변환이다. 벡터공간 내의 같은 벡터라도 기저를 어떻게 잡느냐에 따라 해당 벡터를 표현하는 좌표가 달라지는데,[1] 이 때문에 같은 선형사상을 표현하는 행렬이라도 기준이 되는 기저가 무엇이냐에 따라 서로 다른 행렬이 될 수 있다. 이러한 두 행렬을 묶어 주는 관계가 바로 상사이다. 다시 말해, A, B가 나타내는 선형사상은 대응되는 기저만 다를 뿐 같은 사상이라는 것이다.
3 활용
3.1 거듭제곱
만약, 대각행렬[2] D이 존재하여, A=PDP−1라 하자. 그러면, Ak=P−1DkP이고, Dk를 계산하는 것은, Ak를 직접 계산하는 것에 비해, 아주 쉽다. 그리고 이것이 대각화의 기본 목적이다. 그러나 대각화가 항상 가능한 것은 아닌데, 그럴지라도 "충분히 간단한"[3] B에 대해, A=PBP−1가 성립한다면 그것만으로도 족할 것이다. 이것을 극한까지 밀어붙인 것이 조르당 분해이다.
3.2 선형 변환의 분해
선형 변환이, 서로 영향을 끼치지 않는 공간들로 분해될 수 있는 것인가는 아주 자연스러운 질문이다.[4] 또, 거듭제곱의 편의성도 이 질문의 하위 질문으로 이해될 수 있다. 그리고 이것에 대한 답변들로, cyclic decomposition, primary decomposition 등이 있다. primary decomposition는 계산의 편의성과는 거리가 먼 분해이다.