로켓

giphy.gif

1 Rocket

로켓엔진을 발사시켜. 빌어먹을 저것이 더 커지기 전에 막아야 돼.
끝말잇기 한방단어 켓벡터? 터븀

분사 추진 기관을 가진 비행체를 뜻하는 영어. 좀 더 구체적으로 말하자면 연료와 산화제를 함께 싣고 다니며, 그걸 연소시켜 나오는 가스를 내뿜어서 추진력을 얻는 비행물체. 마땅한 한국어 번역명은 없고, 굳이 정의하면 '분사 추진 기관' 정도지만…당연히 이렇게 긴 글을 쓰느니 '로켓'이라고 부르는 편이 편해서 그냥 이렇게 쓴다. 그 외에도 주화, 신기전 등의 화전(火箭)[1]도 영어로는 로켓이라고 부르지만 그 반대로 부르는 일은 없다. 다만 중국은 여전히 화전이라고 부른다.

로켓은 추진기관 그 자체를 부르는 말이기도 하며, 이 로켓을 이용한 무기미사일과 구분짓는 말로 쓰기도 한다.

항간에서는 교수님이 강의할때 로켓을 롸켓이라고 하면 영어권에서, 로케뜨라고 하면 일본에서, 로켓이라하면 한국에서 공부하셧다 카더라 아니 이게 도대체 무슨 소리야 라케따라고 하면 러시아에서 공부한건가

1.1 추진기관으로서의 로켓

기본적으로 공기저항을 이겨내고 비행하기 위해서는 공기역학적 설계와 추진력을 충분히 제공하는 추진체 기술(엔진등 추진기관)이 필요하다. 여기서 잘못되면 로켓이 날다가 포물선을 그리며 떨어지거나, 연료 효율이 떨어지거나, 예정된 궤도를 벗어나 엉뚱한 궤도로 날아가버리기 때문.

로켓이 추진력을 얻기 위해서는 로켓의 연료인 추진제가 연소관이라 부르는 일종의 통 안에서 타는 것에서 부터 시작된다. 이 연소관 내부에서 연료가 타면 고온고압의 대량의 가스가 발생한다.(당연히 물질은 고온 고압 상태에서 연소, 화학반응이 잘 일어나고, 밀도가 낮은 기체상태에서는 액체나 고체에 비해 부피가 커지며, 밀폐공간안이라면 압력이 높아진다.)이 고압의 가스는 압력이 낮은 쪽으로 나가려 하는데 로켓추진기관의 꽁무니에는 노즐이라 불리는 구멍이 있다. 즉 좁아터진 공간에서 대량의 가스가 꽉꽉 담겨있다가 빠져나갈 공간을 찾아 다들 우루루 몰려 나가게 되는 것. 이렇게 가스를 뒤로 내뿜으면 그 반작용으로 로켓 자체는 앞으로 나가게 되는데 이것이 로켓의 원리다.[2]

추진 기관으로서의 로켓은 추진 공학이라는 별도의 학문에서 다룰 정도로 매우 복잡한 기관이지만, 원리 자체는 제트 기관의 기본 원리를 그대로 따른다. 한편 제트 엔진과 비슷하지만 다른 점 하나는 바로 외부로부터 공기를 공급받지 않는 다는 점이다. 제트 엔진은 기본적으로 외부의 공기를 빨아들이는 과정에서 다수의 압축기 블레이드(compressor blade)로 공기를 압축하며, 여기에 연료를 섞어 연소시킨 다음 더 큰 압력으로 만들어서 뒤로 내뿜는다. 이와는 대조적으로 로켓은 외부로부터 공기를 빨아들이는 과정이 없으며, 이 때문에 제트 엔진에 비해서 대체로 구조가 훨씬 간단하다액체 로켓 엔진의 터보펌프는 어디다 팔아드셨나요[3]. 또한 공기흡입 문제로 속도에 상한선 제한이 걸려 있는 제트 엔진에 비해 고속을 내는 것도 훨씬 자유롭다.[4] 대신 외부로부터 공기를 빨아들이지 못하고 순전히 자신이 가진 연료와 산소를 함유한 산화제만으로 뒤로 내뿜는 가스를 만들어야 하기 때문에, 비추력[5] 면에서는 제트엔진에 비해 떨어진다. 따라서 이는 경제적인 관점에서 로켓의 능력을 크게 제한하는 요인으로 작용할 수 밖에 없는데, 일반적인 탄화수소 계열 연료는 연소하기 위해 그 중량의 2-3배 가량의 산소를 필요로 하며, 로켓 연료로 각광받는 메테인의 경우 3-4배, 수소의 경우 연료 중량의 무려 6-9배에 달하는 산소를 필요로 하기 때문이다. 비행하는 비행기가 굳이 복잡하고 가격도 비싼 제트 엔진을 쓰는 것도 이러한 맥락에서다.[6][7]

다만 로켓이 그 동작에 있어서 어떠한 외부 산화제도 필요로 하지 않는다는 점은 우주 비행과 같이 제한된 환경에서 동작하는 추진 기관을 제작하는 데 있어서 큰 이점으로 작용한다. 또한 모든 로켓 엔진은 제트 엔진과 비교했을 때 짧은 동작 시간이지만 자신의 중량 대비 훨씬 큰 추력을 낼 수 있고, 여기에 제트 엔진과 달리 고체 로켓 모터 등의 일부 로켓 엔진은 그 구조가 복잡하지도 않으므로 값싸면서도 큰 힘을 낼 수 있는 추진기관으로서 미사일이나 후술할 로켓 무기 등의 추진기관으로 널리 쓰이고 있다. 다만 추력을 발생하기 위해 엄청난 양의 추진제를 소모해야 하기 때문에 분사시간이 우주발사체의 경우 6~8분, ICBM처럼 수 천 km를 날아가는 미사일도 4~6분 정도가 고작이며 그 이후에는 관성(혹은 종류에 따라 관성과 중력)에 의해 속도를 유지한다.[8] 한편 이는 우주 공간에서 주로 사용되는 이온 추진 엔진의 경우 오히려 정 반대가 되는데, 우주 공간에서는 물체의 운동을 방해하는 저항이 거의 없다는 사실에 의거하여 제작된 이온 엔진은 극히 적은 양의 불활성 기체를 전자기력으로 가속하여 단 수십 밀리뉴턴의 추력을 짧게는 수 일, 길게는 수 년 동안 발생하며 우주선을 초속 수십 킬로미터에 이르는 엄청난 속력으로 가속시킨다.

로켓 추진 기관에는 많은 종류가 존재하며 이는 화학 추진 로켓, 전기 추진 로켓, 저온 가스 추력기 등 다양한 형태가 존재하는데, 일반적으로 '로켓 추진 기관'이라 함은 지상에서 강력한 힘을 내기 위해 사용하는 화학 추진 로켓을 주로 의미한다. 이러한 화학 추진 로켓에서는 추진제의 연소로 발생한 가스를 노즐로 분사하여 그 반작용에 의한 힘을 활용한다. 대부분의 로켓 노즐이 채택한 공통적인 구조는 뒤로 갈 수록 구멍이 점점 좁아지는 구조이다 (수축 노즐; contraction nozzle). 이는 가스가 지나는 관의 직경을 줄이면 줄일수록 속도가 빨라진다는 베르누이의 정리에 기인하는데, 가스의 속도가 빨라질수록 가스에 의해 발생하는 반작용, 즉 로켓의 추진력이 증가하게 된다는 것으로 설명할 수 있다. 한편 단면적을 줄이는 것만으로 배기 노즐을 만드는 것에는 한계가 있다. 압축성 유체가 지나는 관의 단면적을 일정 수준 이상으로 줄이면 유체의 속도가 음속(M=1)에 도달해 더이상 빨라지지 않고 연소관 내부의 압력만 증가하기 때문이다. 이렇게 더이상 수축 노즐로 속도를 높일 수 없는 유체의 흐름을 질식 유동(chocked flow)이라고 한다. 수축 노즐의 한계점을 극복하기 위해 고안된 것이 데라발 노즐(de Laval nozzle)인데, 데라발 노즐의 경우 수축 노즐의 끝에 확장 노즐이 달려 있는 형태이다. 질식(chocking) 상태에 도달한 음속 유동을 다시 확장시킬 경우 가스의 속도는 임계 속도를 넘겨 초음속 유동이 되는데, 로켓은 이를 통해 추진제의 연소 에너지를 더 효율적으로 추력으로 변환할 수 있게 된다. 오늘날 절대 다수의 로켓 엔진들이 채택하고 있는 노즐 또한 이러한 데라발 노즐이다.

이 로켓용 노즐은 고압과 고열을 버텨야 할 뿐만 아니라, 로켓의 엄청난 진동과 추력을 버틸 수 있는 것이어야 한다. 일반적인 금속으로 만들어도 로켓에서 발생되는 기체가 온도가 상온이라면(압축은 고려 안하고) 충분히 버틸 수 있는 것이지만, 로켓 배기 플륨은 연소관 내부에서 연소된 기체로 구성된 만큼 매우 고온이다. 금속은 고온이 되면 물성이 현저하게 떨어진다. 또한 배기 플륨의 열유속(heat flux)은 웬만한 금속을 삽시간에 녹는점 이상으로 가열시킬 정도다. 따라서 현대 로켓 엔진에서는 연소실과 노즐에 대해 다음과 같은 냉각 방식이 단일로, 혹은 복합적으로 적용된다:

1. 복사 냉각: 연소 가스의 열유속이 크지 않은 경우 노즐이 견딜 수 있는 열(온도)보다 더 높은 열을 전달한다면, 노즐 바깥으로 복사 방출한다.
2. 삭마 냉각: 고열에 노출될 경우 표면에 다공성 탄소 매트릭스(carbon matrix)를 남기며 비교적 낮은 온도의 가스를 만드는 재질로 연소실과 노즐을 만든다.
3. 재생 냉각: 연소실과 노즐을 2중 금속 벽으로 만들고, 그 사이로 추진제가 지나가며 벽으로 방출되는 열을 흡수하도록 한다.

아주 간단한 형태의 모형 로켓을 취미로 즐기는 사람들도 많은데, 보통 밑에 설명할 간단한 구조의 고체추진 방식이다. 전기신호 등으로 점화시키면 발사대를 따라 수직으로 슝-하고 날아오르는데, 로켓이 다 타버리면 위쪽으로도 순간적으로 높은 압력의 가스를 분출하도록 되어있다. 그러면 로켓 앞쪽 머리 부분으로 가스가 분출되면서 뚜껑 형태의 머리 부분이 분리되고, 그 안에 낙하산이 바깥으로 빠져나와 펼쳐져 낙하산을 타고 로켓이 내려온다. 바람 부는 날에는 엉뚱한 곳으로 날아가서 못 찾게 되기 쉬우므로 로켓에 이름과 연락처를 써 놓으면 좀 낫다… 반드시 법적 절차를 밟은 다음 발사를 하도록 하자. 우리나라는 분단 국가라 무기로 활용될 소지가 높은 물건에 대한 제제가 심하며 심해야만 한다. 절차를 밟은 다음 반드시 주변에 사람이 없는 곳에서 발사하도록 하고 설계를 제대로 하고 발사하자. 이를 제대로 안하면 폭발하는 경우도 있고 심각한 상해를 야기한다. 발사 전에 반드시 어디 묶어놓고 테스트를 해보아야 한다. 제대로된 설계 없이 발사하는 것은 자살행위이다! 더구나 남까지 죽을 수도 있다. 최근 아마추어 로켓 커뮤니티에서 이런 일이 자주 발생하는데 아주 위험한 행위이다. 안그래도 사고가 자주 발생해서 이미지 자체가 좋지 않은데 이는 자기집에 불지르기 그 이상 그 이하도 아니다.

아무래도 모형 로켓이라 해도 실제로 불이 붙어 날아가는 것이고, 그 속도도 상당하여 위험하다 보니[9][10] 최근에는 어린이 용으로 물로켓이 유행. 물을 펌프를 이용하여 물로켓 안의 물통안에 최대한 높은 압력으로 채웠다가 순간적으로 물로켓을 분리시키면 높은 압력의 물이 바깥으로 분출되면서 그 반작용으로 물로켓이 날아간다.

사실 거의 대부분의 로켓은 연료와 산화제를 반응·연소해서 얻는 가스로 추진력을 얻지만, 물로켓 방식처럼 미리 높은 압력의 가스나 액체등을 저장해 두었다가 필요하면 이를 분출하여 추진력을 얻는 방식도 실제로 쓰이기도 한다. 이를테면 우주선의 자세제어용 로켓들.

주로 상대적으로 작은 미사일 등에 쓰이는 로켓은 그까이꺼 대충~ 만들면 되지만, 장거리 미사일인 ICBM이나, 우주선, 인공위성, 혹은 사람같은 주요 화물(?)이 탑승하는 우주발사체의 경우 매우 정교하게 만들어야 된다. 특히 사람이 탔는데 극심한 포고 현상에 빠지면 승무원은 요단강 익스프레스…

또 로켓 기관이란 것 자체가 간단하게 말하면 폭발 중인 상황에 연료와 산소를 계속 공급하면서 한쪽으로 그 에너지를 쏠리게 해서 추력편향시키는 개념이므로, 잘못 만들면 그대로 저 하늘이 되는 수가 있다. 최악의 경우에는 자폭장치마저 제어불능이 된 채 도시에 떨어져 폭발, 최소 수백명이 사망하는 대 참사가 일어나기도 한다.



대표적인 사례가 중국의 장정 3호 발사 실패 참사.

일부 중까들이 창정 3B 로켓 참사를 들어 중국의 우주기술이 별볼일 없다고 주장하고 있지만, 실제로 미국과 러시아도 비슷한 실패를 여러번 한적 있다. 중국의 문제는 창정3B가 발사되는 쓰촨 성 시창 우주기지가 인가 근처에 있었다는 점이다.

로켓티어로 시작된 등짝에 로켓팩이나 추진기관을 달고 날아다니는 캐릭터 유형 클리셰도 있다. 워해머 40k의 스톰보이즈라든가, 스타크래프트2사신이라든가, 아이언 맨 이라든가…실제로 비슷한 물건을 미국이 만들어서 군사목적으로 사용하려 한 적이 있으나 로켓은 아니고 제트 엔진을 이용한 제트팩이다. 이 물건은 군사목적으로 쓰는데는 실패하였으나 1984년 LA 올림픽의 개막식에 등장시켜 많은 이들을 놀라게 하였다.

밑에 설명할 무기로서의 로켓 이외에도 인공위성이나 우주인 등을 우주로 쏘아올리는 것도 흔히 로켓이라 하는데, 이는 실질적으로 현재 인류가 가진 기술로는 우주로 무언가를 쏘아올리는 방법으로는 로켓 추진기관이 유일하기 때문. 다만 로켓 자체는 추진기관을 일컫는 말이므로, 로켓 추진 기관을 포함하여 전체 시스템을 일컫는 말로 우주발사체(Space launch vehicle)라는 단어가 있다.

러시아의 수학자인 콘스탄틴 치올코프스키가 고안한 로켓 방정식은 로켓의 무게와 연료의 무게를 계산해 목표한 궤도에 올리는데 사용된다. 그리고 최초로 액체연료로켓을 개발해서 발사에 성공한 사람이 미국의 과학자 로버트 고다드로 현대로켓의 아버지(Father of Modern Rocket)라고 불린다. 이 외에도 로켓과 관련하여 유명한 사람이라면 베르너 폰 브라운, 세르게이 코롤료프, 존 카멕 등이 있다.

로켓을 분류하는 방법은 여러가지가 있는데, 일단 생김새에 따라 분류할 수 있다. 로켓 본체 주변에 4개의 보조로켓을 나란히 세우는 묶음식 로켓과 2, 3단계로 계단 쌓듯이 쌓는 단계식 로켓이 있다. 묶음식 로켓은 화력이 강한 대신 출력의 균형을 맞추기가 어려워서 사장되는 추세. 대신 모양새는 제법 멋있다.

현존하는 대부분의 로켓은 화학반응을 이용하고, 이는 다시 연료와 작동방식에 따라 고체, 액체, 하이브리드식, 그리고 램로켓으로 분류할 수 있다. 화학반응이 아닌 핵융합이나 핵분열을 이용하는 로켓 시스템도 연구된 바 있고 실제 테스트까지 된 바 있으나 (플루토 계획 참고) 현재 기술로 가능한 수준의 개방형 원자력 로켓엔진은 방사능을 풀풀 뿌리고 다니기에 핵 만능주의 시대 이후 연구되고 있지 않고, 폐쇄식 원자력 로켓엔진은 엄청난 기술력이 필요하기에 최소한 인류가 태양계를 벗어날 필요성이 있어야 개발될 것으로 보인다.

1.1.1 고체 로켓

가장 오래된 형태의 로켓이라고도 할 수 있다. 연소관 안에 마치 화약 같은 고체로 된 연료를 넣어두고, 이 연료에 불을 붙이는 것으로 끝. 화약은 그 화학성분 내에 이미 산소를 가지고 있기 때문에 주변에 별도의 산소가 없어도 일단 불만 붙으면 알아서 타들어가며 대량의 가스를 만들어내므로 이것을 응용하여 신기전같은 고체로켓을 과거에도 이미 만들 수 있었다.

현대의 고체로켓 연료는 당연한 이야기지만 화약과는 다른 성분의 것들을 사용 중이다. 특히 현대의 폭발용 화약은[11] 폭발하면 말 그대로 연소가 아니라 폭발을 해버리기 때문에 지나치게 타들어가는 속도가 빨라서 연소관이 순간적으로 급격히 올라간 압력을 이기지 못해 폭발해 버린다. 말 그대로 폭탄이 되어버린다.

고체로켓은 보통 연소관 안에 고체추진제를 채워 넣는데 때로는 이 추진제 안에 알루미늄 분말 등을 추가로 넣기도 한다. 이는 알루미늄의 높은 반응성 때문인데, 알루미늄이 빠르고 고온으로 연소되면서 연소 속도를 올리기 때문이다. 어느정도로 반응성이 좋냐 하면 이를 얼음에다가 잘 섞은 것도 ALICE라고 하는 나름 친환경(?) 연료로 쓴다. 알루미늄 분말 역시 폭탄 제조에 사용되는 물질이기 때문에 법적 제제가 심하다. 절대로 불순한 목적으로 사용하면 안된다. 코렁탕을 들이킬 수도 있다. 다만 알루미늄 분말은 대량의 흰 연기를 만들기 때문에 미사일이나 로켓 무기에는 잘 사용하지 않기도 한다. 적이 로켓에서 발생하는 대량의 연기를 보고 미사일/로켓의 접근 사실을 미리 눈치채거나 심지어 발사 지점을 역으로 눈치채고 발사대나 발사요원들을 역으로 공격할 수도 있기 때문.

연소관 자체는 보통 고온/고압에 잘 견디는 금속 합금을 사용하였으나 최근에는 무게를 줄이기 위해 열에 강하면서도 튼튼한 복합소재(이를테면 특수 탄소섬유 복합재 같은 것)를 이용하는 경우도 있다. 이 연소관 안에는 다시 일종의 단열재로서 고무 재질 비슷한 것들이 도포된다.

일반적으로는 연소관을 미리 만든 다음 이 안에 아직 굳지 않은 똥덩어리로 가득한 죽 같아보이는 고체추진제를 채워 넣는다. 추진제는 보통 일정 수준의 열을 가하면 굳지만[12] 추진제의 종류에 따라서는 오히려 일정 수준의 열을 가하면 녹일 수 있는 것도 있다. 한번 굳은 추진제를 녹일 수 있는 것들의 경우에는 무기체계에 많이 쓰이는데, 오랫동안 쓰지 않고 저장해 둔 로켓탄의 경우[13] 신뢰성에 의심이 가므로 대대적인 정비를 할 때 추진제 역시 녹여서 일단 꺼낸 다음 새 추진제를 채워 넣거나 할 수 있다.[14]

고체로켓의 큰 장점은 로켓을 만들어 둔 상태에서 장기보관이 가능하다는 점이다. 밑에 설명될 액체로켓은 미리 연료와 산화제를 넣어두면 얼마안가 내부 도관들이 부식될 수 있기 때문에 발사 직전에 연료를 주입해야 하는데, 민간용 로켓은 상관 없지만 언제 미사일을 발사해야 할지 모를 군사용 미사일 용도로서는 부적합한 면이 있다.

그러나 고체로켓의 단점이 있는데 일단 불을 붙이면 제어가 사실상 불가능하다는 점. 낙장불입 고체로켓연료는 한 번 타들어가면 끝도 없이 타들어가며, 이를 적절히 막을 방법도 별로 없다. 그래서 필요에 따라 불을 껐다가 다시 켜거나, 혹은 추력을 줄였다가 다시 올리거나 하기 어렵다. 이 때문에 엄청나게 먼 거리를 날아가서 정확히 목표지점에 도달해야 하는 우주발사체나 ICBM에는 고체로켓을 사용하는데 어려움이 있다. 다만 몇 가지 꼼수 비슷한 것을 통해 고체로켓도 어느 정도 불을 끄고 다시 켜거나, 추력을 제어하는 것이 가능하다.

불을 껐다가 다시 켜는 가장 간단한 방법은 다중 로켓이 있다. 즉 아예 고체로켓 추진 로켓을 여러개를 가지고 있다가, 필요하면 하나 다 쓰고 그 다음엔 관성과 중력으로 날아가다가 다시 어느정도 속도가 줄어들었다 싶으면 또 쓰는 식. 이때 이미 써 버린 연소관은 필요 없으므로 버리는 편이 더 좋으며, 이런 방식의 대표적인 방법이 단분리다.[15]

연소관을 여러개 별도로 만드는 대신, 연소관 내부에 추진제를 여러개 넣어두는 방법도 있다. 대표적인 방법으로 다중펄스 방식. 로켓 안에 두 개 이상의 추진제 뭉치를 넣어두는 대신 그 뭉치 사이에는 격벽을 둔다. 첫번째 로켓을 점화시키면 같은 연소관 내부에 있더라도 첫번째 추진제만 타들어가고 두번째 추진제는 격벽에 막혀 열이나 압력의 영향을 받지 않으므로 그대로 있게 된다. 이렇게 첫번째 추진제가 다 타고 난 다음에는 앞서의 경우처럼 일정 거리를 날아가다가 속도가 너무 줄었다 싶으면 다시 격벽 뒤의 두 번째 추진제를 점화시키는 방식이다. 이때 두번째 추진제가 만드는 가스의 압력에 의해 격벽이 깨져나가고, 두 번째 추진제의 가스는 깨진 격벽을 넘어 노즐을 통해 바깥으로 빠져 나간다. 이것을 추진제를 두개를 이용하면 이중 펄스 로켓, 여러개를 쓰면 다중 펄스 로켓이라 한다. 현재 주로 미사일의 사거리 늘리기 용도로 쓰이는 방식.[16] 이 기술의 어려움은 첫번째 추진제 작동시에는 격벽이 깨지지 않지만 두 번째 추진제 작동시에는 확실히 격벽이 깨져야 한다는 점이다.

다중펄스 방식 보다 좀 더 쉬운 방식으로는 그냥 추진제를 두 종류를 넣어두는 것이다. 보통 로켓[17]에 있어서 가장 큰 힘이 필요한 것은 초기 가속 단계이며, 일단 속도를 얻고 난 다음에는 상대적으로 약간 더 적은 힘이 필요하다. 그래서 추진제를 두 종류를 넣어두는 것. 일단 연소관 내부의 외곽쪽, 앞쪽으로 연소속도가 느린 추진제를 넣은다음 굳히고, 다시 그 안쪽 중심부, 외곽쪽에 연소속도가 빠른 추진제를 넣어둔다. 고체추진제는 중심부, 그리고 노즐에서 가까운 뒤쪽부터 타들어가게 되므로 중심부의 연소속도가 빠른 추진제가 먼저 타서 큰 힘을 만들고, 일단 최고속도로 가속될때즈음 외곽쪽의 연소속도가 느린 로켓 추진제가 타들어가면 결과적으로 속도를 어느 정도 유지하면서도 더 오랜 시간 탈 수 있다. 흔히 이를 가속-지속(Boost-Sustain) 방식이라고 한다.

이것조차 어렵다 싶으면 추진제 내부의 구멍형태를 이용하는 방법도 있다. 고체추진제는 똑같은 추진제라 하더라도 타들어가는 면적이 넓으면 더 빨리 탄다. 그래서 중심부 안쪽을 별모양이나 기타 복잡한 모양으로 만들어서 표면적을 넓히는 것. 이를테면 별모양의 경우 표면적이 넓으므로 빨리 타들어가겠지만, 이 별 모양은 추진제가 타들어감에 따라 그냥 원형으로 뭉개져갈테고 그러면 표면적이 줄어들어서 연소속도가 자연스럽게 느려진다.

이 단점을 해결하기 위해 산화재와 연료가 섞여 있는 고체 연료에서 산화제를 빼고 대신 액화 산소를 사용하여 연소를 조절하는 방법이 있다. 하이브리드 방식인데 이는 효율이 매우 낮다는 치명적인 단점이 있다.

고체 로켓의 예 : SLS용 고체 로켓 부스터(Solid Rocket Booster). 연료의 비주얼이 참...

1.1.2 액체 로켓

액체 로켓은 말 그대로 연료가 액체인 로켓이다. 로켓 전체가 액체로 되어 있다는 소리가 아니다. 물론 액체 뿐만 아니라 산소를 공급하는 산화제 역시 액체.

처음으로 액체로켓이 쓸 만하다는 것을 밝힌 것은 미국의 과학자 H. 고더드다. 고다드는 수차례 성공적으로 발사시켰으나 생전에는 그다지 인정받지 못했고 정작 나치 독일에서 그의 연구 결과를 잘 써먹어서(...) V2를 개발해버린다. 고다드의 로켓은 단순한 형태였으나 현대 액체 로켓이 가진 기본적인 구조는 전부 가지고 있었다.

현재 가장 널리 쓰이는 연료는 케로신, 즉 등유이며[18] 이 외에도 하이드라진이나 액체수소도 쓰이지만 두 물질은 폭발위험이 높고 특히 히드라진은 맹독성물질이어서…

산화제로는 플루오린, 질산, 과산화수소, 액체산소가 쓰인다. 그러나 플루오린은 부식성이 너무 높아서 산화제 탱크나 도관이 녹아버릴 위험이 있고 질산은 그 자체가 강산이다. 액체산소는 말 그대로 산소를 액체화 시킨 것인데 온도가 영하 183 이하가 되어야만 가능하므로 유지에 어려움이 있고,[19] 또한 액체산소 그 자체로도 폭발성이 제법 강하다. 나로호의 경우에는 1단 로켓의 연료로 케로신을, 산화제로 액체산소를 썼다.

액체인 연료와 산화제를 실제 연소가 이뤄지는 연소실로 제대로 보내려면 연료와 산화제의 압력이 높아야 한다. 이 때문에 주로 펌프를 사용하는데, 연료와 산화제를 안정적으로 공급하는 펌프를 만드는 일도 꽤 어려운 기술 중 하나. 보통은 터빈을 이용한 터보펌프를 많이 사용한다. 터빈이란 쉽게 말해 일종의 풍차 같은 것이며, 고속으로 이동하는 가스에 의해 이 터빈이 돌아가면 거기에 축으로 연결되어있는 펌프가 돌아서 산화제와 연료를 연소실로 보내게 된다. 이 터빈을 돌리기 위해서는 다시 고압의 가스가 필요한데 과거에는 별도의 연료를 또 넣어서 고온/고압의 가스를 만들어서 터빈을 돌렸다. 그러나 이는 너무 비효율적이므로 이후 추진기관 자체가 만들어내는 연소가스중 일부는 노즐로 빠져나가지 않고 터빈을 돌리는 쪽으로 되돌아오도록 하게 만들었다. 처음에는 이 터빈을 돌린 가스는 그대로 다른 곳으로 빠져나갔으나 최근에는 다시 연소실로 되돌아가도록 하여 효율을 극대화하고 있다.

액체로켓의 최대 장점은 연료와 산화제의 양을 밸브로 조절하여 추력을 조절하거나[20], 혹은 아예 껐다가 다시 켜는 것이 가능하다는 점.[21][22] 이 때문에 고체로켓에 비하여 상대적으로 정밀하게 움직이기 좋고, 그래서 우주선이나 인공위성을 쏘아 올리는데 적합하여 현재도 상업용 발사체는 대부분 액체 로켓을 쓰고 있다. 다만 우주왕복선의 경우 최초 상승 단계에서 추력을 추가로 얻기 위해 고체로켓 부스터를 함께 사용하였다. 우주왕복선을 보면 양 옆에 가는 로켓이 두 개 더 붙어 있는데, 이것이 고체로켓 부스터.

액체 로켓의 최대 단점은 연료와 산화제가 변질되기 쉽거나, 강한 부식성을 가지고 있거나 하기 때문에 미리 넣어둘 수 없으며, 보통 로켓 발사 직전에 연료와 산화제를 주입해야 한다. 그래서 일단 만들어 놓은 다음에는 점화신호만 내리면 바로 발사되는 고체로켓과 달리 발사전에 연료와 산화제를 집어 넣는 준비시간이 필요하다. 군용으로 쓰이는 미사일류는 발사 버튼을 누르는 그 순간 적을 공격할 수 있어야 하는데 연료와 산화제를 집어 넣으려면 시간이 걸리는 방식은 그리 좋다고 할 수는 없다.[23][24] 게다가 대형 ICBM은 연료를 주입하는 과정을 적이 인공위성으로 관측, 정찰 할 수도 있으므로 이쪽이 미사일 발사 준비를 하고 있다는 것을 사전에 알 수도 있다.[25] 또한 여러 이유로 연료와 산화제를 주입한 상태에서 로켓 발사가 취소되면 이 연료와 산화제를 도로 뽑아내야 하므로 이것도 일이다.

또한 고체로켓에 비하면 펌프가 필요하는 등, 기계적으로 복잡하여 대체로 액체로켓이 만들기 더 까다롭고 요구하는 기술도 더 많다. 더불어 같은 추진력이면 고체에 비해 액체가 부피가 더 크므로 액체로켓이 부피가 더 크며, 이 부피를 유지하기 위한 탱크와 펌프 등을 고려하면 결과적으로 액체로켓이 고체로켓에 비하여 부피가 더 커지고 무게도 더 무거워진다.

아래는 2016년 현재 우주발사체용 액체로켓 기술을 보유한 국가.

  • 위 국가들 중 모든 국가들은 ICBM급 또는 그 이상의 성능의 미사일 개발 기술을 보유하거나, 최소한 그러한 미사일을 수입하여 소유하고 있다.[28] 단, 북한은 현재 추정중. 여담으로 ICBM을 만드는 데 필요한 기술과 인공위성을 쏠 때 필요한 기술이 같다. 아주 큰 로켓을 만들어서 인공위성을 실어서 쏘아올리면 인공위성 로켓이고, 탄두를 실어서 남의 나라 땅에 꼬라박으면 ICBM이 되는 것. 북한이 ICBM 실험을 하고서 인공위성 쐈어염 데헷 하고 둘러대는 이유가 바로 이것이다.[29]

1.1.3 하이브리드 로켓

고체로켓과 액체로켓의 장점을 섞은 로켓. 보통 추진제는 고체를, 산화제는 액체를 사용하는 방식을 많이 쓴다.[30]

즉 액체(혹은 기체) 산화제의 양을 조절하여 로켓의 추력을 조절하거나 아예 꺼버릴 수 있으며, 그러면서도 액체로켓에 비하면 가격도 저렴하고 최소한 연료주입에 필요한 시간과 노력도 아낄 수 있다. 물론 고체로켓에 비하면 더 복잡하고 무거우며, 액체 로켓에 비하면 추력의 조절기능이 아주 매끄럽지는 않다. 게다가 액체인 산화제와 고체인 추진제가 잘 섞이면서 연소과정이 이뤄지도록 하는 것도 기술적으로 관건.

미국의 민간인 우주관광용 발사체인 스페이스십원에서 이 추진제를 처음 사용하였다.

1.1.4 램 로켓

이것은 엄밀히 말하자면 로켓이 아니라 램제트 기관에 속한다. 그래서 램로켓 보다는 고체추진 램제트라 부르는 경우가 더 많기도 하다.(혹은 '덕티드 로켓'이라 불리기도 한다.) 추진제는 고체추진제를 사용하는데, 산화제를 넣는 대신 램제트 방식을 응용하여 공기를 외부로부터 받는 것. 이 때문에 공기흡입구가 필요하며, 우주에서는 쓸 수 없다. 이 방식은 외부에서 공기를 끌어들여 압축한 다음 내보내므로 일반 로켓에 비하여 제트 엔진에 가까울 정도로 효율이 훨씬 좋아진다. 게다가 공기를 연소실로 들여보내는 양을 조절하면 하이브리드 로켓처럼 추력을 조절할 수도 있다.

단점으로는 일단 별도의 부스터가 필요하다는 점. 램로켓 역시 램제트의 일종이므로 공기의 압축은 초음속 비행 중 발생하는 충격파를 응용한다. 바꿔 말하면 초음속 이하의 속도에선 제대로 작동하지 않는다는 소리. 이 때문에 보통 초기 가속단계에는 진짜 로켓(주로 고체로켓)을 부스터로 사용한다.

램제트 방식의 또 다른 단점은 공기의 흡입양과 질이 매우 중요하다는 점. 가만히 똑바로 날아가는 상태라면 상관 없지만 미사일처럼 중간에 경로를 급격히 바꾸거나 할 경우에는 공기의 흡입량이 순간적으로 변하거나, 혹은 아예 공기가 제대로 들어오지 않거나 할 수 있다. 이 경우 산소의 공급이 원활하지 않아서 연소가 불안정해지거나 아예 불이 꺼져버릴 수 있다. 불꽃만 튀기면 다시 불이 붙는 액체로켓과 달리 고체 추진제는 일종의 작은 화약인 별도의 점화 장치가 필요한데, 이것은 1회용이므로 결과적으로 점화기를 미리 여러개 만들어 두지 않는 한 한 번 불꽃이 꺼지면 되살리는 것은 불가능.

이를 위해 최근에는 2단계 연소 방식을 사용한다. 즉 아주 약간의 산화제를 함유한 추진제에 일단 불을 붙인다. 보통 이 부분을 가스발생기(gas generator)라 부르는데, 여기서는 일단 연소과정이 이뤄지지만 제대로 연소가 다 이뤄지지 않고 불완전 연소가 된 가스가 발생하게 된다. 하지만 산화제가 기본적으로 소량이나마 함유되어있으므로 공기 흡입이 원활하지 않아도 어쨌거나 연료가 꺼지지는 않는다. 이렇게 만들어진 불완전 연소된 가스는 다시 주연소실로 가서 외부에서 흡입된 공기와 만나 완전 연소가 된다. 이 방식은 공기 흡입이 제대로 되지 않았을 때, 순간적으로 추력이 약해질 지언정 아예 꺼져버리는 것은 막을 수 있다.

현재는 주로 미사일들의 사거리 늘리는 용도로 쓰이고 있으며 대표적인 램로켓 방식 미사일로 SA-6미티어 등이 있다.

1.1.5 원자력 로켓

화학작용 대신에 원자력을 에너지원으로 사용하는 로켓엔진이다. 가장 간단한 방식으로는 고온의 원자로 뒤로 추진제를 통과시켜 가열, 팽창시킨 후 그 압력으로 분사하는 열핵 로켓(Nuclear Thermal Rocket NTR)이 있다. 일반적인 원자로를 사용하는 방식은 이미 1950~70년대에 미국과 러시아에서 개발되었고 가동실험도 했으며 거의 실제 사용이 가능한 단계 직전까지 갔다. 미국에서는 화성 유인탐사용으로 사용할 계획이었지만 원자력이 민감한 주제다 보니 실제 쓰이지는 못했다.

원자력을 사용하는 만큼 일반 화학로켓에 비해 월등한 효율을 자랑한다. 또 일반 화학로켓처럼 연료와 산화제를 싣고다닐 필요가 없이 추진제만 가지고 다니면 된다는 장점이 있다. 추진제로서는 가벼운 수소가 이상적이지만 일단 데워서 잘 팽창하는 물질이면 쓸 수 있다. 이론적으로는 외계 행성에서 액화메탄 등 추진제를 수급하는 것도 가능하다.

단점으로는 원자로가 비싸고 무겁다보니 추력 대비 효율은 떨어진다. 수소 자체는 가볍지만 밀도 높게 보관하는 게 불가능하다 보니 연료탱크도 커져서 무게가 더욱 증가한다. 무엇보다 원자로에 추진제를 통과시키다보니 방사선이 분사구로 줄줄 새어나오게 되므로 지구상에서 쓰기엔 무리가 있고, 사실상 우주 공간에서만 쓸 수 있다. 애초에 원자로가 무겁기 때문에 중력을 이기고 날아올라야 하는 지상 근처에서는 효용이 적다.

우리가 흔히 일상에서 볼 수 있는 일반 원자로를 쓸 수도 있지만, 효율을 높이려면 원자로의 온도롤 높여야 하는데 당연히 그럼 노심용융이 일어나기 때문에 효율에 한계가 있다. 그런데 여기서 막장급의 발상이 나오는 것이 우주공간에서는 방사능 걱정이 없으니 노심용융을 일으킨 상태에서 가동시키는 액체노심 방식이다.

워프등과 달리 자연법칙상 일단 어느 정도 가능은 하면서 SF 소설급 성능을 발휘할 수 있는 방식이지만, 문제는 역시 노심용융 상태의 초고온의 열을 우주선이 버텨내는 게 어렵다는 것이 있고, 초고온의 녹아있는 핵연료를 담아둘 용기 역시 만들기 힘드니 이게 우주선 분사구로 고스란히 흘러나온다는 게 있다. 고체노심이면 단순히 고체 상태의 핵연료 사이로 추진제를 통과시키면 알아서 가열이 되지만, 핵연료가 액체상태가 되어버리면 너무 고온이라 어디 따로 담아둘 수가 없어 추진제와 섞여버리게 되고 따로 분리해낼 수가 없다. 따라서 필연적으로 핵연료가 추진제와 함께 분사구로 나오도록 해야 하는데 우주공간이니 방사능 걱정은 접어둔다 쳐도 핵연료가 너무 빠르게 새어나가면 반응을 유지할 수가 없다. 그렇다고 너무 천천히 새어나가면 이게 반응실 내부에 쌓여서 체르노빌처럼 되어버릴지도 모른다. 때문에 이론적으로는 그리 어렵지 않지만 실현시키기는 매우 어려울 것으로 보고 있다.

액체노심 방식에서 그나마 현실적인 것으로 임계밀도의 우라늄염 수용액(...)을 사용하여 연속적인 핵분열을 일으키는 원자력 염수로켓이 있다. 고순도 우라늄은 임계질량 이상이면 스스로 핵분열을 시작하는데, 이 로켓은 이를 막기 위해 고순도 우라늄염 수용액을 중성자 차폐구조의 탱크에 저장해 뒀다가 우주선 뒤로 분사하는 방식. 즉 핵연료가 섞인 물이 그대로 연료가 되고 추진제가 된다.

더 막장 아이디어로는 노심 온도를 수십만 도, 즉 기체가 될 때까지 올리는 방법이 있다. 이론상 현존 로켓들의 수 배에서 십수 배가 넘는 효율을 낼 수 있지만 액체 노심도 만들 수 있을지가 의문인 상황인데 이건 정말로 막장.

좀 더 현실적인 방법으로는 추진제가 실린 핵폭탄을 우주선 뒤에서 지속적으로 터트려 반발력으로 날아가는 오리온 프로젝트, 혹은 펄스 핵 추진방식이 있다. 이쪽은 성능이 넘사벽으로 우수하고, 무거운 원자로도 없으므로 추력도 타 로켓과 비교도 되지 않게 높다. 그리고 현존 기술로도 만드는 데 별 문제가 없다. 수백 명을 태운 대형 우주선을 궤도에 올리거나 늙어죽기 전에 태양계를 벗어나려면 현실적으로 유일한 방법. 물론 단점은 어쨌건 핵폭탄이 우주선 바로 뒤에서 터지고 있다는 것이다(...).

이런 핵 로켓들은 기술적으로는 투자가 이루어진다면 만들어질 가능성은 있지만, 방사능 문제가 민감하긴 하니 당장 지구가 100년뒤 멸망하거나 한다면 모를까, 당분간 이런 로켓들이 개발될 일은 없을 듯 하다.

1.2 무기체계에서의 로켓

무기체계에서는 로켓 기관을 사용하는 무기중에서도 유도가 되지 않는 무기체계만을 로켓이라고 부른다.[31] 좀 더 의미를 정확히 하기 위해 무유도 로켓(unguided rocket)이라고 부르기도 한다. 즉 로켓추진 기관을 사용하지만 유도장치를 쓰는 것은 로켓이 아니라 미사일이 되는 셈. 다만 이러한 구분법은 어디까지나 영어권에서만 통용되는 것이며, 러시아는 미사일도 똑같이 로켓이라고 부른다. 다만 일반 로켓과 구별하기 위해 '유도 로켓'쯤으로 부르기도 한다. 아이러니한 점은 미사일 중에서 크루즈 미사일쪽은 대부분 제트 엔진을 주 엔진으로 쓰는데, 러시아는 이것마저도 로켓이라고 부른다.

한편 영어권에서도 간혹 유도로켓이라고 부르는 물건들이 있는데, 이는 기존에는 유도가 안되는 물건들이었으나 간단한 유도장치를 추가로 붙여서 유도 기능이 추가된 것들이다. 그래도 유도능력이라던지 하는 면에서 미사일과 차이가 있고 그로 인해 운용교리가 로켓에 가깝기 때문에 로켓이라고 부르는 것인듯.

미사일에 비하면 훨씬 값이 싸고, 같은 위력/같은 사거리라면 더 가볍다는 것이 가장 큰 장점. 복잡한 유도장치가 없다보니…또한 /대포와 달리 미사일/로켓은 후폭풍은 쩔지만 발사시에 반동이 없으므로 무겁고 큰 반동을 흡수하는 장치를 달기 상대적으로 어려운 대신 후폭풍 걱정할 필요는 없는 항공기용 무기로도 많이 쓰인다. 게다가 거의 동시에 여러발을 쏠 수 있으므로 넓은 지역을 순식간에 제압하는 용도로도 좋다. 물론 총포에 비하면 로켓은 그 크기에 비해 실제로 적에게 타격을 입힐 탄두의 크기가 작고,[32] 미사일에 비하면 명중률이 크게 떨어진다.

가볍고 간단하며, 값싸게 대량으로 만들 수 있다는 장점 때문에 아직까지도 보병들의 전차 공격수단은 휴대용 대전차 미사일이 아닌 대전차 로켓이다. 대표적으로 RPG-7이나 판저파우스트3같은.

다연장로켓포와 대전차로켓의 존재감 때문에, 로켓은 잊혀진 무기체계였다가 2차 세계대전 때부터 널리 쓰인 것으로 알려져 있다. 그래도 1차 세계대전 때도 쓰긴 썼다. 프랑스의 뉴포르 11에 장착한 르 프리외르 로켓탄 등.[33] 이건 주날개 지주에 장착된 튜브형 론처(로켓 발사 후에도 남는다)에 장착하여 사용하는데 주임무는 비행선 공격용[34]이었다. 유효 사거리는 약 120m.

공격헬기공격기 역시 일정 지역의 적 차량이나 보병 공격용으로 로켓을 많이 쓴다. 게다가 대량의 로켓이 불꽃과 화염을 끌며 날아오는 모습은 적에게 상당한 심리적 압박감을 준다고 한다.배틀필드 4에서 폭격기가 자신 주변을 폭격하는걸 처음본 느낌정도, 대신 이쪽은 폭격기도 아니면서 더 세다.[35] 다만 이쪽에서 쓰는 로켓은 한 발 한 발의 위력은 약한 편이므로 전차공격용으로는 쓰기가 어렵다. 대신 표적의 종류에 따라 맞춤형으로 다양한 탄두를 갖추고 있으며, 심지어 공격용이 아니라 어느것이 표적인지 동료 공격기들에게 알려주는 연막탄 로켓이나 야간에 빛을 제공하는 섬광탄 로켓도 있다. 항공기용 로켓의 목록은 영문 위키의 목록을 참고하자

무겁고 큰데다가 반동억제를 위해 복잡한 장치를 탑재해야 하는 자주포등에 비해 로켓은 후폭풍은 크지만 반동이 없으므로 트럭 수준의 차량에 발사대만 얹으면 훌륭한 지상군 화력지원용 포병이 만들어진다. 게다가 포신 수명과 열에 의한 휨 현상등의 한계상 단시간 내에 여러발을 쏠 수 없는 포들에 비해 다연장로켓은 한 번에 여러발을 거의 동시에 쏠 수 있으니…이 때문에 소련이 카츄사 로켓을 열심히 사용하였으며, 우리나라는 북한군이 카츄사 로켓의 후예인 BM-21을 쓰는 것에 자극 받아 구룡 로켓을 만들었고, 미국 역시 베트남전에서 직접 카츄사에 당해본 뒤에 여기에 삘 받아서 멀탱 MLRS를 만들었다.

1.3 항목이 만들어진 로켓

ICBM 계열의 로켓은 해당 항목 참조.

1.4 관련 인물

1.5 로켓(바주카, 미사일 포함)이 등장하는 작품 목록

2 식물 Rocket

양식에서 샐러드 등에 주로 쓰이는 채소. 바질과 더불어 제이미 올리버가 사랑하는 허브 중 하나. 딱히 발사시킬 수는 없다
십자화과의 잎채소 로써 루꼴라 라고도 한다.

3 Locket

파일:Attachment/로켓/Locket.jpg

국어 표기상에는 항목 1과 같은 발음이라 익숙하지 않다. 여러 이야기에서 가끔 누군가가 이 로켓을 달고 나오면 앞의 로켓과 착각해서 로켓모양 장신구를 달고 있는 것으로 잘못 알게 되는 경우가 있다.

목걸이에 다는 작은 장신구. 뚜껑을 열어서 안에 뭔가를 넣을 수 있는데 주로 작은 초상화나 사진, 머리카락같은 작은 크기의 물건을 넣는다. 이때문에 많은 창작물이나 서브컬처에서 이 로켓은 귀중한 사람 혹은 먼저 떠난 사람을 그리워하는 키 아이템으로 활용하며 내용이 진지하면 진지할수록 이것의 심리적 위력도 강하다.

구조상 회중시계나침반같은 물건에 겸해서 만들어지는 경우도 많다. 그리고 이런 물건은 대부분 시대상 귀중품에 속하므로 높은 확률로 위에 언급한 소중한 인물의 그림이나 사진, 유품등을 보관하게 된다.

해리 포터 시리즈 후반부, 정확히는 해리 포터와 혼혈 왕자에서 중요한 역할로 등장한다.

감성적인 부분을 많이 자극하는 아이템이라 열면 안되는 사망 플래그로 유명하다.
반대로 책 종류와 함께 방탄역할을 하는 생존 플래그로 쓰이는 경우도 많다. 목걸이라는 특성상 가슴 부분에 늘어뜨려지는데다 금속제인 것이 대다수인지라.

4 이름

4.1 증기기관차 로켓 호

철도 초창기의 증기기관차로, 세계 최초로 승객을 실어 나른 증기기관차이다. 조지 스티븐슨과 그의 아들 로버트 스티븐슨이 함께 만들었다. 이때 조지 스티븐슨은 최초로 본격적인 여객 영업을 시작한 리버풀-맨체스터간 철도를 부설했는데, 철도 회사의 높으신 분들이 조지 스티븐슨의 기관차 도입을 꺼린 것. 이 때문에 조지 스티븐슨은 1829년 증기기관차 경주 대회를 제안한 뒤, 이 로켓 호를 만들어 대회에 출전했다. 결과는 시속 46km로 달린 로켓 호의 압승. 결국 이 기관차는 리버풀-맨체스터 간 철도에 채택되었다.

증기기관차 역사상 대단히 중요한 위치를 차지하는 기관차인데, 후대의 증기기관차 보일러 구조의 원형을 제시했기 때문이다. 로켓 호는 뜨거운 연기가 지나가는 관을 25개를 넣어 물을 끓여 증기를 발생시켰는데, 이것은 열이 전달되는 단면적을 최대한 늘린 구조였다. 덕분에 적은 열로도 많은 증기를 발생시킬 수 있었고, 보일러의 효율을 최대한으로 끌어올릴 수 있었다. 로켓 호가 우승한 것도 이러한 효율 높은 구조였기 때문. 이런 보일러 구조는 이후 다른 증기기관차도 모두 채택하여 거의 표준화 되다시피 했고, 증기기관차가 도태될 때까지 사용되었다.

영국 국립철도박물관, 런던과학관, 독일철도박물관 등에 있으며 영국철도박물관에는 주행 가능한 레플리카도 있다.

4.2 혹성탈출 시리즈에 등장하는 침팬지

로켓(혹성탈출 시리즈) 항목 참조.

4.3 마블 코믹스에 등장하는 라쿤

로켓 라쿤 항목 참조.

4.4 포켓몬스터 1세대 게임 및 모든 세대의 애니메이션에서 나오는 악당 집단

로켓단으로.

5 SOD계열 AV제작사

아스트랄한 작품/수치플레이 작품을 많이 만든다. 드물게 캣파이트쪽도 생산하는편. 대표적인 시리즈로는 시간을 멈추는 기계가 있다.
품번은 RCT-XXX로 시작.

6 유럽의 리그 오브 레전드,스타크래프트2

Team ROCCAT 항목 참조.

  1. 불화살이란 뜻도 있지만, 화약을 이용한 로켓식 무기도 이렇게 불렀다
  2. 공기를 뒤로 내뿜는 것 자체가 미사일이 앞으로 나가는 원리일 뿐, 이렇게 뿜어낸 가스가 주변의 공기를 밀어내서는 아니다. 만약 주변의 공기를 밀어내는 것이라면 공기가 없는 우주 공간에서는 로켓이 날아갈 수 없다. 실제로 과거 뉴욕 타임즈에서 이를 잘못 이해해서 로켓은 우주에서 날 수 없다는 기사를 썼던 적도 있었다고…
  3. 사실 로켓 엔진의 한 종류인 액체 로켓 엔진의 경우 액체 상태의 극저온 산화제를 적게는 수십 기압에서 많게는 수백 기압으로 가압하기 위한 터보펌프라는 물건을 함께 가지고 가는데 우주 왕복선 메인 엔진의 경우 이 터보펌프 때문에 NASA에서 6년간 수십 명의 엔지니어들이 달라붙어 고생했다는 사실을 생각해 본다면 또 쉬운 것도 아니다
  4. 제트엔진의 공기 흡입 성능에 대한 문제를 개선하기 위해 초음속으로 공기를 흡입하여 연소할 수 있는 스크램제트 등의 추진기관 또한 발명되었다.
  5. 추진 기관이 소모하는 추진제가 단위 질량 당 발생할 수 있는 유효 충격량을 의미하는 값이다. 150s, 300s 와 같이 나타내거나, 150N/(kg-s) 등으로 나타내며, 단위 중량의 추진제를 소모해서 얼마나 많은 충격량 (모멘텀)을 발생 시킬 수 있는지 하는 로켓 엔진의 연비에 해당하는 단위인데 속도 단위나 초 시간 단위로 표시. 속도 단위면 배기가스의 배출 속도이고 초 단위라면 단위 추진제를 써서 수직으로 발사해 떨어지기 시작하는 시간 곱하기 중력 가속도 (9.8 m/sec)
  6. 드문 케이스지만 로켓을 이용하여 전투기에 로켓 엔진을 달 궁리를 하기도 하였다. 대표적인 것이 최초의 로켓전투기인 Me163 코메트. 작전 가능시간은 10분 남짓하였지만…
  7. 항공기가 아주 짧은 활주로에서 이륙하는 보조수단으로 RATO(Roccket Assist Take-Off)라 불리는 로켓 부스터를 쓰는 경우는 있다.
  8. 다만 대기권 내에서 쓰이는 대부분의 미사일은 공기저항에 의해 실질적으로는 날아가면서 속도나 고도 둘 중 하나를 까먹으면서 날아간다.
  9. 별거 아닌거 같이 보여도 설계를 제대로 하고 만들면 음속은 가뿐히 넘는다. 진짜 위험한 물건이다
  10. 실제로 사람이 사망하는 사고도 일어난다.
  11. 흔히 말하는 고폭약(High Explosive) 종류.
  12. 로켓 추진제는 생각보다 쉽게 불이 붙지 않는다.
  13. 전쟁이 나지 않는 이상, 보통 미사일이나 로켓은 훈련용으로 소모하는 것들을 제외하면 30년 넘게 전쟁에 대비하여 보관해 둔다.
  14. 녹일 수 없는 타입은 일단 굳어 버렸으므로 연소관 및 관련된 부분까지 싹 새로 갈아치워야 한다.
  15. 다만 단분리는 액체로켓에도 쓰이는 방식이다.
  16. 한때 천궁 미사일이 이 방식의 다중펄스 로켓을 쓴다고 잘못 알려진적이 있는데, 이는 기자들이 측추력용 다중펄스 방식과 혼동한 것. 사거리가 40km급인 천궁에는 굳이 다중펄스 로켓을 쓸 이유가 없다. 천궁의 다중펄스는 자세제어를 위해 여러개의 작은 로켓을 미리 천궁에 심어두었다가 필요에 따라 타이밍을 맞춰 이 로켓 중 하나를 작동시켜 미사일의 방향을 급격히 트는 것이다. 공교롭게도 용어가 비슷하다보니 군사 잡지나 언론매체들이 종종 혼동한다.
  17. 특히 빠른 시간내에 적을 공격해야 하는 미사일.
  18. 제트엔진용 연료도 기본은 등유다. 물론 로켓이나 제트 엔진용은 굉장히 순도가 높게 정제하므로 정유소에서 쓰는 등유와는 질적으로 많이 다르며 이 중에서도 로켓 연료는 높은 연료에서 로켓 기관을 망가트릴 수 있는 황이나 연료를 변질시키는 불포화 탄화수소를 제트 엔진용 연료보다 더 엄격히 제거한다.
  19. 우주로켓 발사 장면에서 로켓 표면에 간혹 얼음 덩어리같은 것들이 덮고 있는 것이 이 때문.
  20. 물론 이짓도 연소실 내부의 최소압력을 유지해야되서 제한적인 범위 내에서만 가능하다.
  21. 고체로켓의 핀틀 방식에 비하면 이쪽은 아직 불이 붙기 전 상태의 산화제나 연료의 흐름을 제어하는 것이므로 온도나 압력이 낮아서 상대적으로 밸브를 만들기 쉽다.
  22. 끄는건 쉬워도 다시 킬때 중력이 없다면 별도의 고체연료엔진을 달거나 하는등의 조치가 필요해서 마냥 쉬운 건 아니다. 하이드라진 단일연료의 경우엔 촉매를 쓰니까 쉽긴 하지만...
  23. 미국의 초창기 ICBM이었던 타이탄 II의 경우 연료 주입에 30분 정도가 걸렸다.
  24. 다만 ICBM 등은 사실상 우주 발사체에 가까으므로 정밀제어를 위해 별 수 없이 액체로켓을 쓰는 경우도 많다. LGM-118 피스키퍼처럼 부스팅 단계에서는 고체 연료, 컨트롤이 중요한 재돌입체에는 액체 연료를 쓰는 경우도 있다.
  25. ICBM들이 지하의 사일로(silo)에 들어가 있는 이유 중 하나다. 지하에서 발사준비 작업을 하면 적이 알 수 없으므로. 또 하나는 적이 만약 핵공격을 해와도 지하에 숨어서 그 공격을 피해내고 반격하기 위해서.
  26. 3월 16일 우레가 완성되었다.
  27. 12월말 100초 연소시험을 완료하였다.
  28. 다만 이 중 일본은 아직 핵무기는 없지만 핵무기를 만들 수 있는 기술 수준은 보유한 것으로 인정되는 준핵보유국이다. 이는 ICBM 기술이 아직 없는 대한민국도 마찬가지이다.
  29. 다만 우주발사체는 일단 우주로 올라가면 끝이지만 ICBM은 그 화물(즉 탄두)가 다시 대기권에 재돌입 할 수 있는 기술이 필요하다.
  30. 단순히 우주왕복선처럼 고체로켓 부스터와 액체로켓 추진기를 쓴다는 개념이 아니다. 하나의 로켓에서 연료와 추진제 중 하나는 고체, 하나는 액체(혹은 기체)라는 것이다.
  31. 한국에서는 미사일은 '유도탄'으로 번역하고, 무유도 로켓추진 무기는 그냥 로켓으로 부른다.
  32. 로켓 무기에서 로켓 추진기관이 그 길이의 절반에서 크면 2/3 이상을 차지한다. 즉 실제 적에게 피해를 줄 탄두의 폭약은 나머지 부분에만 들어있다.
  33. 출처: 전투기 매카니즘 도감 p 22, p23
  34. 당시 전투기에 장착된 주력 기관총인 7.7mm 탄의 위력으로는 가스 누출을 하지 못하였다. 영화 레드 바론에서도 신호탄을 쏘는 장면이 있다
  35. 신기전 시절이나 지금이나 똑같다.